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Abstract

Airborne cameras on low-flying unmanned vehicles in-
troduce new privacy challenges due to their mobility and
viewing angles. In this paper, we focus on face recogni-
tion from airborne cameras and explore the design space
to determine when a face in an airborne image is inher-
ently protected, that is when an individual is not recogniz-
able. Moreover, when individuals are recognizable by fa-
cial recognition algorithms, we propose an adaptive filter-
ing mechanism to lower the face resolution in order to pre-
serve privacy while ensuring a minimum reduction of the
fidelity of the image. In particular, we estimate the resolu-
tion of faces captured at different altitudes and tilt angles
using the data from navigation sensors and ascertain when
the captured face is inherently protected. When the face is
unprotected, we define a mechanism that automatically con-
figures the strength of a privacy protection filter to improve
the trade-off between privacy protection and fidelity of an
aerial image or video.

1. Introduction
Micro Aerial Vehicles (MAVs) equipped with high-

resolution cameras are becoming common in public places
for recreational and business video capturing [2, 14]. To
protect the privacy of individuals who happen to be in the
vicinity and are captured in the videos, it is desirable to
identify and redact portions of the images, such as faces,
which would reveal their identity.

Unlike several applications of surveillance imagery such
as people counting, perimeter protection and behaviour
analysis whose utility is not compromised by a full redac-
tion of the identity-related data (sensitive regions) [7],
recreational or business videos require a minimal distortion
of the image content in order to be usable. For these videos,
utility can be defined as the fidelity of the protected images
with respect to the originally captured images.

The redaction or distortion of sensitive regions can be
obtained through fixed or adaptable privacy filters. Fixed

privacy filters generally remove sensitive regions in images
or replace them with a de-identified representation. Ex-
amples of fixed privacy filters include masking (blanking)
[6, 23] and replacing regions representing people with sil-
houettes or avatars [24, 8, 9, 21]. Adaptable privacy filters
can be configured depending on privacy and fidelity of the
targets. Examples of adaptable privacy filters include pix-
elation [9], blurring [28], cartooning [12], scrambling [11]
and warping [18]. These are adaptable privacy filters whose
distortion strength can be adjusted automatically during run
time, for example by configured pixelation and blurring fil-
ters based on the size of the detected objects [22]. However,
new challenges e.g. due to mobility and the tilt angle of the
airborne cameras arise for these privacy filters as most have
been developed for Closed Circuit Television (CCTV) or
hand-held cameras.

Recent frameworks that support privacy-preservation in
airborne cameras are based on geo-fencing, generic data
encryption and on-board visual data processing. For geo-
fencing, the MAV may either contain the coordinates of re-
stricted geographical areas in their navigation software (e.g.
the community-generated database NoFlyZone [20]) before
a mission or during a mission through beacons over WiFi
to determine whether flying in certain areas is allowed or
re-routing is necessary [26]. However, simple geo-fencing
is insufficient to protect the privacy with oblique images in
the presence of powerful optics. Alternatively, MAVs can
send encrypted data to a privacy server that blanks, blurs or
mosaics sensitive regions [17]. This approach could cause
significant latency due to data transfer between the airborne
camera, the privacy server and the end-user. A desirable ap-
proach is to exploit on-board visual processing to detect and
then blur faces prior to sending the images to the end-user.
UAS-VPG [3] is a specific approach that extends traditional
privacy-preserving filters. However this approach does not
consider (i) the tilt angle of the camera and, most impor-
tantly, (ii) how to configure a blurring filter in a moving
camera. In fact, faces can be captured from various angles
and distances, thus resulting in a high variation of face ori-
entations and resolutions.

978-1-5090-3811-4/16/$31.00 c©2016 IEEE IEEE AVSS 2016, August 2016, Colorado Springs, CO, USA



  

Parameter
estimation

Adaptive 
filtering

Privacy
protection test

Sensitive area 
detection 

  Pixel density
      calculation    

Pose
estimation 

Figure 1: Block diagram of the proposed adaptive privacy filtering framework for airborne cameras.

In this paper, we focus on models for the on-board adap-
tive protection of faces captured from airborne cameras. We
define a mechanism for privacy design space exploration
that allows us to automatically configure an adaptive pri-
vacy filter. The mechanism uses the resolution of the de-
tected sensitive region to determine when it is inherently
protected. We use the auxiliary data from the on-board nav-
igation sensors (Global Positioning System (GPS) and In-
ertial Measurement Unit (IMU)) to determine when a face
is not inherently protected and then apply an adaptive pri-
vacy filter that distorts a sensitive region depending upon
its captured resolution. The block diagram of the proposed
approach is shown in Figure 1.

The rest of the paper is organised as follows: Section 2
formulates the privacy design space and discusses its ana-
lytical results, while Section 3 describes the design of an
adaptive privacy filter. Section 4 presents experimental re-
sults and Section 5 concludes this paper.

2. Privacy Design Space

Let an MAV fly at an altitude of h1 meters. Let the prin-
cipal axis P of its on-board camera be tilted by α from the
nadir direction N (see Figure 2). A value of α 6= 0 gener-
ates an oblique image. Each frame It at time t could contain
Nt faces. However, for simplicity but without loss of gener-
ality we will consider in this paper only the case of Nt = 1.
We represent the face region in the image as R, which is
viewed at an angle β. Finally, let h2 be the height of the
face above ground.

Let the pixel density be defined as the number of pixels
(px) per unit distance (cm) in a certain portion of the im-
age It at time t. Let ρh and ρv represent the pixel density
(px/cm) around the centre CR of R in the horizontal and
vertical direction, respectively (see Figure 3).

Our goal is to determine whether ρh and ρv are suffi-
ciently large to facilitate the recognition of the identity of
the person whose face is captured in R and then to apply
an adaptive privacy filter in case recognition is considered
possible.
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Figure 2: Capturing an image with an airborne camera at
height h1. The principal axis P of the camera is tilted by
α from the nadir direction N . The sensitive region R, a
face at height h2 above the ground, is viewed at an angle
β. The variables ρh and ρv represent the horizontal and
vertical pixel density of R at its centre CR in the captured
image.

and IMU units, an MAV can estimate its position with an er-
ror that is smaller than 10 − 20 cm [25]. In this work, we
assume that on-board navigation sensor’s data is available
for each It with high accuracy and therefore use these aux-
iliary data to estimate h1 and α.

Given a face detection result R in It, we determine β us-
ing CR. For α 6= 0, a pixel of the image sensor covers an
area of the 3D world of different size depending on its dis-
tance and orientation [15], [19]. Let ph and pv represent the
physical dimensions of a pixel in the horizontal and vertical
direction, respectively. If f is the focal length of the cam-
era, we can determine the horizontal density ρh for a pixel
around CR as

ρh =
fcos(β)

ph(h1 − h2)
, (1)

and the vertical density ρv as

ρv ≈
fcos(β)sin(β)

pv(h1 − h2)
. (2)



  

Figure 3: Mapping of a face at height h2 to an image plane
with oblique imagery. The height h2 is considered between
the ground and the center of the face, CR, which is seen
from the back in the illustration.

Let the binary status variable ωR ∈ {0, 1} define
whether R is naturally protected (ωR = 0) because of a
low horizontal and vertical density, or not (ωR = 1):

ωR =

{
1 if ρh > ρ0h & ρv > ρ0v
0 otherwise

(3)

where ρ0h and ρ0v are experimentally defined thresholds. If
ωR = 0, then the original frame It can be transmitted with-
out any modifications.

Figures 4a and 4b show an example of ρh and ρv if we
consider as camera a Canon EOS 5D Mark II in HD mode
(1920×1080 pixels), whose sensor dimensions are 36 x 24
mm2, thus ph = 18.75 µm and pv = 22.22 µm. We chose
h2 = 1.7 m and h1 from 3 m to 150 m. Typical lenses have a
focal length from 10 mm to 200 mm. Finally, β is assumed
to vary from 0◦ to 90◦. If we accept to compromise on
fidelity, we can globally filter It using ρh and ρv determined
at β = 45◦. This would lead in certain image-capturing
conditions to an unnecessarily high level of blurring that
reduces the fidelity of It.

Figure 4c depicts the boundary between the privacy sen-
sitive space and the inherently protected space. The privacy
sensitive space is determined by intersecting the individ-
ual segmentations based on ρh and ρv using the thresholds
ρ0h = 1 px/cm and ρ0v = 1 px/cm.

3. Adaptive Privacy Filter
When R is unprotected (i.e. the face is recognizable), we

want to apply an adaptive privacy filter G so that the fidelity

of the images can be increased, while protecting the identity,
with respect to the use of a fixed privacy filter. Let Ipt be a
frame with a protected sensitive region generated as

Ipt = G(It, R, µ), (4)

where µ represents the parameter of an adaptive privacy fil-
ter. The value of µ is such that the corresponding filtering
with G turns ρh and ρv to be smaller than ρ0h and ρ0v , re-
spectively. For example, in pixelation µ is determined by
the averaging kernel size [9], in blurring by the standard de-
viation of a Gaussian [28], in cartooning by the kernel size
of a mean shift filter [12], in scrambling by the number of
transform coefficients [11] and in warping by the relocation
distance of pixels with respect to the calculated values of ρh
and ρv [18]. Due to the difference in their protection opera-
tion, these techniques will have different thresholds ρ0h and
ρ0v for the same sensitive region R.

In this work, we use the Gaussian blur that is widely used
for outdoor imagery [13]. G therefore becomes a convolu-
tion operation on R. We use an approximated anisotropic
Gaussian kernel defined as

g(h, v) =
1

2πσhσv
e
−
(
h2

2σ2
h

+ v2

2σ2v

)
, (5)

where σh and σv are the standard deviations of the Gaussian
in the horizontal and vertical direction, respectively. The
estimation of σh and σv depends on their spatial cut-off
frequencies f ch and f cv , respectively, which in turn depend
on the selected point on the filter response (i.e. 3 dB, “half
width half maximum” or “close to zero”). In this work, we
chose “close to zero” (i.e. three times of a Gaussian func-
tion’s standard deviation in the frequency domain) to sup-
press frequency components higher and equal than f ch and
f cv sufficiently. After transforming f ci with i ∈ {h, v} from
frequency to space domain (i.e. threshold ρ0i ), the estimated
values for σh and σv are given by

σi =
3ρi
πρ0i

. (6)

Finally, µ is determined by sampling the Gaussian func-
tion upto three times of σi as

µi = 2d3σie+ 1. (7)

After convolving with a kernel of size µi, the useful in-
formation is reduced to ρ0i (px/cm). Figure 5 shows sample
results of adaptive Gaussian blurring, estimated standard
deviations σh and σv , and kernel sizes µh and µv . From
the figure, it is apparent how µh and µv decrease with de-
creasing ρh and ρv , respectively. This adaptive behaviour
of µh and µv aims at maintaining the fidelity of the images.
The required values of ρ0h and ρ0v depend on the expected
ability of a face recognizer to discriminate identities.

In the next section we quantify the benefits of the pro-
posed blurring approach.
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Figure 4: Horizontal and vertical pixel densities for EOS 5D Mark II in HD video mode at different heights, with different
focal lengths and tilt angles. (a) Variation of ρh for different values of h1, f and β. The largest values of ρh occur at β = 0◦.
(b) Variation of ρv for different values of h1, f and β. The largest values of ρv occur at β = 45◦. (c) Separation of the
privacy sensitive space from the inherently protected space using ρ0h = ρ0v = 1 px/cm as segmentation threshold. The privacy
sensitive space (indicated by the green slices) corresponds to the intersection of the segmentation performed in (a) and (b).

(a1: 8.34,7.23) (a2: 5.03,3.88) (a3: 3.96,2.87) (a4: 3.06,2.28) (a5: 2.32,2.03) (a6: 1.94,1.55) (a7: 1.55,1.28)

(b1: 97,85) (b2: 59,47) (b3: 47,35) (b4: 37,29) (b5: 29,25) (b6: 25,19) (b7: 19,17)

(c1: 121,105) (c2: 75,57) (c3: 59,43) (c4: 45,35) (c5: 35,31) (c6: 29,25) (c7: 25,21)

(d1: 161,141) (d2: 99,77) (d3: 77,57) (d4: 61,45) (d5: 47,41) (d6: 39,31) (d7: 31,27)
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Figure 5: Comparison between various degrees of Gaussian blur to protect a facial image from an LDA face classifier. The
numbers following a∗ represent the value of ρh and ρv , respectively. The numbers following b∗, c∗, d∗ represent the value
of µh and µv , respectively. (a1-a7) Original images from [16] with decreasing pixel densities (from left to right). (b1-
b7) Gaussian blur on (a1-a7) with ρ0h = ρ0v = 0.5 that results in slightly under-blurred images (i.e. the recognition rate
is higher than that of a random classifier). (c1-c7) Adaptive Gaussian blur on (a1-a7) based on our proposed framework
(ρ0h = ρ0v = 0.4) resulting in an adequate blurring of the faces for privacy preservation. With an adaptive Gaussian blur the
kernel is selected depending on the pixel density for R. (d1-d7) Gaussian blur on (a1-a7) with ρ0h = ρ0v = 0.3 that results
in slightly over-blurred images that, although they make the recognition rate equivalent to that of a random classifier, they
unnecessarily decrease the fidelity of the facial images. (e1-e7) Fixed Gaussian blur of (a1-a7) using a safe kernel designed
considering the highest possible pixel density in order to make the recognition accuracy of a classifier equivalent to that
of a random classifier, irrespective of the pixel density for R, the face. This fixed Gaussian blur (µh = 121, µv = 105)
significantly deteriorates the fidelity of lower resolution faces.



4. Experimental Results
In this section we first study different target resolutions

to determine the threshold values for separating inherently
protected and unprotected spaces. We then analyse the
trade-off between privacy and fidelity for adaptive and fixed
privacy filters using standard face recognition algorithms by
measuring their recognition performance with images from
airborne cameras. We use the LDA [5] and LBPH [1] al-
gorithms for face recognition. The LDA face recognizer
reduces the class dimension by maximising the inter-class
to intra-class scatter ratio. In contrast, the LBPH face rec-
ognizer encodes a local structure instead of a full image to
reduce the class dimension.

To measure fidelity, we apply the Structural Similarity
Index (SSIM) and the Peak Signal to Noise Ratio (PSNR).
The SSIM measures the image quality by comparing the
degradation in the structure of a protected image with the
original [27], while the PSNR represents the power ratio of
the original image with respect to the error introduced by
protection.

4.1. Experimental Setup

We use an outdoor dataset emulating an MAV dataset
with the availability of auxiliary data, created with a camera
placed at different heights and distances from faces [16]. In
this dataset, the principal axis of the camera is parallel to the
ground, i.e. α = 90◦. In order to compute the pixel densities
for this particular setup, we modify Equations 1 and 2 as
ρh = fcos(γ)

phd
and ρv ≈ fcos2(γ)

pvd
, where γ = 90◦ − β and d

represents the horizontal distance between the face and the
camera.

We consider an image as privacy protected when the face
recognition algorithms achieve an accuracy similar to that
of a random classifier and therefore look for threshold val-
ues ρ0h and ρ0v resulting in a random classifier accuracy.
The accuracy of a face recognizer corresponds to the rank 1
value of the cumulative match curve.

The data set contains 11 subjects and thus the accuracy
of a random classifier for this dataset is 0.091 (1/11). We
chose data from 63 different positions for each individual
resulting in a total of 693 test images (63 × 11).

To train the LDA and LBPH face recognizers, we used
separate training images, which consisted of 11 images for
each subject. For the detection of the face region, we anno-
tated the images with the ground truth of the eye locations.
As described in [4], we pre-processed all training and test
images by (i) applying an affine transformation to compen-
sate for scale and face rotation, (ii) using a bilateral filter
to reduce noise and to compensate for light variations and
finally (iii) masking to remove non-facial portions.

For the test images, we determined the values of ρh and
ρv both by using auxiliary data (see Equations 1 and 2) and
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Figure 6: (a) The pixel density variation (ρh and ρv) of the
693 images in the data set based on auxiliary data and man-
ually counting the pixels. (b) The achieved accuracy of the
LDA and LBPH face recognizers over the 693 raw images.

by manually counting the number of pixels on a face and
normalising it by the standard face dimensions, i.e. the bi-
tragion breadth of 15.9 cm and menton-crinion length of
21.9 cm [10]. As shown in Figure 6a, there is a small dif-
ference between the calculated pixel densities using these
two methods with a Root Mean Square Error (RMSE) of
0.39 px/cm for ρh and 0.74 px/cm for ρv , respectively. The
main reason for this error lies in our assumption of the iden-
tical height (h2) and the identical face dimension for all 11
subjects.

4.2. Privacy Design Space

Figure 6b shows the recognition accuracy of LDA and
LBPH over the original 693 test images as well as the re-
sponse of a random classifier for reference. The LBPH face
recognizer clearly outperforms the LDA face recognizer.
However, the clear identification of the threshold values for
the separation between the inherently protected and unpro-
tected space is not possible with this data. For LBPH, the
separating boundary lies below ρh = 1.43 px/cm (and cor-
responding ρv = 1.15 px/cm). Although LDA touches the
random classifier level at ρh = 1.43 px/cm, this resolution
cannot be considered as threshold with high confidence, be-
cause the accuracy of LDA also dropped at ρh = 4.1 px/cm
and then again increased at ρh = 2.99 px/cm. Such be-
haviour may be due to the limited population size of the
dataset. Thus, the separating boundary lies at or below
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Figure 7: Face recognition accuracy of adaptively filtered
data with different threshold values ρ0h and ρ0v . (Top) LDA:
The accuracy is similar to a random classifier at ρ0h = 0.4
px/cm, ρ0v = 0.4 px/cm. (Bottom) LBPH: The average re-
sponse is close to a random classifier at ρ0h = 0.2 px/cm,
ρ0v = 0.2 px/cm.

ρh = 1.43 px/cm (and corresponding ρv = 1.15 px/cm)
for LDA.

4.3. Privacy Adaptive Filtering

To explore the boundary further, we filter all test images
with adaptive Gaussian blur to degrade the pixel resolution
to the specified levels of 0.6, 0.4 and 0.2 px/cm for both
ρ0h and ρ0v . The kernel size of the Gaussian blur filter (µh
× µv) is computed as described in Section 3. We then de-
termine the recognition accuracy over the degraded images.
Figure 7 shows that the accuracy of LDA remains mostly
around the random classifier accuracy of 0.091 at ρ0h = 0.4
px/cm and ρ0v = 0.4 px/cm. Thus, we define ρ0h = 0.4
px/cm and ρ0v = 0.4 as the boundary between the inherently
protected and unprotected spaces for LDA. Although the ac-
curacy of LBPH fluctuates, its average response is close to
a random classifier at ρ0h = 0.2 px/cm and ρ0v = 0.2 px/cm.
We therefore use ρ0h = 0.2 px/cm and ρ0v = 0.2 px/cm as
the separating boundary for the LBPH.

Finally, we compare the fidelity of the adaptively filtered
images with images filtered with a fixed safe kernel. There-
fore, we apply adaptive Gaussian blurring with ρ0h = 0.4
px/cm and ρ0v = 0.4 px/cm and fixed Gaussian blurring
with kernel size µh = 121 × µv = 105 to all images and
measure the SSIM and PSNR values. Figure 8 shows that
adaptive filtering provides a higher fidelity in terms of SSIM
and PSNR as compared to fixed safe filtering.

0 2 4 6 8 10
0

10

20

30

40

50

ρh (px/cm)

S
S
I
M

(%
)

 

 

Adaptive
Fixed

0 2 4 6 8 10
10

15

20

ρh (px/cm)

P
S
N
R

(d
B
)

 

 

Adaptive
Fixed

Figure 8: Fidelity achieved with adaptive and fixed privacy
filtering over 693 images using the (top) Structural Simi-
larity Index (SSIM) and the (bottom) Peak Signal to Noise
Ratio (PSNR).

5. Conclusions
We presented a privacy protection framework for air-

borne cameras on recreational unmanned aerial vehicles.
The horizontal and vertical resolutions of sensitive regions
can be determined for tilted cameras from different heights
using data from navigation sensors. This knowledge of the
resolution can be used to determine whether a sensitive re-
gion is inherently protected or unprotected. For an unpro-
tected region, we exploit this prior knowledge of the resolu-
tion to configure an adaptive privacy filter that keeps the fi-
delity of aerial images high while preserving privacy. In the
specific implementation discussed in this paper, we showed
the effectiveness of the proposed approach on faces by mea-
suring their fidelity. However, the proposed approach can be
applied to other sensitive regions, such as car number plates
and can also be extended to other than fidelity.

As future work we will expand the experimental evalua-
tion with larger population size and we will extend the study
to incorporate recent face recognition algorithms. More-
over, we will investigate potential privacy leakage caused
by super resolution filters.
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