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Abstract

Mobile cameras on robotic platforms can support fixed
multi-camera installations to improve coverage and target
localization accuracy. We propose a novel collaborative
framework for prioritized target tracking that complement
static cameras with mobile cameras, which track targets on
demand. Upon receiving a request from static cameras, a
mobile camera selects (or switches to) a target to track us-
ing a local selection criterion that accounts for target prior-
ity, view quality and energy consumption. Mobile cameras
use a receding horizon scheme to minimize tracking uncer-
tainty as well as energy consumption when planning their
path. We validate the proposed framework in simulated re-
alistic scenarios and show that it improves tracking accu-
racy and target observation time with reduced energy con-
sumption compared to a framework with only static cam-
eras and compared to a state-of-the-art motion strategy.

1. Introduction
Collaboration between static and mobile sensors has

been employed for sensor placement [16] and path plan-
ning to extend the coverage for target detection [11]. More-
over, mobile cameras (i.e. autonomous robotic platforms
equipped with cameras) can help static cameras by actively
tracking targets to extend the duration of the observation
and to improve localization accuracy [20].

The problem of assigning multiple robots to track mov-
ing targets can be decomposed in two tasks, namely
robot-task assignment and motion planning. Coopera-
tive Multi-robot Observation of Multiple Moving Tar-
gets (CMOMMT) uses local force vectors to maximize the
average observation time of targets [9, 15]. The vectors
are obtained from predefined distance-based functions and
targets are generally treated equally. To enable a collabo-
rative motion strategy, each robot shares its scene knowl-
edge with all the other robots [2, 9, 15]. However, sharing
local knowledge globally may be unrealistic when robots
with limited communication range are far apart. More-
over, depending on the specific context, targets may have

application-related priorities. For example, some targets
with higher priority should be tracked first, with higher ac-
curacy or for longer.

In addition to the above, while energy efficiency is con-
sidered when assigning robots to a set of goal positions [17]
or when planning paths towards goal positions [12], it has
not yet been taken into account for motion planning when
assigning mobile sensors to follow targets [20].

In this paper, we propose a collaborative framework
for prioritized target tracking with both static and mobile
cameras. Each static camera detects targets and dynam-
ically joins tracking groups to fuse neighborhood-related
and target-related information. Each mobile camera moves
on demand after accepting a request from static cameras.
Mobile cameras select a target to track, plan their motion
for active tracking and fuse their target state estimate with
that of static cameras. We propose a target selection strat-
egy for mobile cameras based on local knowledge on the
scene dynamics received from static cameras. Moreover, we
define (i) an energy-efficient robot-target assignment that
combines a distance-based criterion with target priority in-
formation; and (ii) an energy-efficient motion strategy that
maximizes view quality and minimizes energy consumption
based on a realistic energy model.

2. Problem formulation

Let C = CS ∪ CM be a mixed camera network, where
CS is a set of static cameras and CM is a set of mobile
cameras. Each camera ci ∈ C has a directional field of view
(FoV) defined by its viewing angle φ and viewing range rv .

Let Ni(t) = {ci′ : dii′(t) < rc} define the single-
hop communicative neighborhood of ci, where dii′(t) is the
distance between camera ci and camera ci′ , and rc is their
communication range.

Let N be the total number of targets. Each target oj is
assigned a priority wj ∈ (0, 1] and is uniquely identifiable
from the other targets by discriminative features (e.g. color).

Let sj(t) = [xj(t), yj(t), ẋj(t), ẏj(t)]
T be the state

of target oj on the ground plane, where pj(t) =

[xj(t), yj(t)]
T is its position and vj(t) = [ẋj(t), ẏj(t)]

T
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is its velocity. Similarly, sij(t) is the estimated state of tar-
get oj on the ground plane when seen from camera ci.

We assume that a target is tracked by at most one mo-
bile camera. A mobile camera ci (i.e. a camera mounted
on a robot) is defined at time t by the position of the robot,
[xi(t), yi(t)]

T , the heading direction of the robot, ϕi(t),
and the orientation of the camera, θi(t).

Finally, let Cj(t) be the set of cameras that are jointly
tracking oj at t. The goal is to update over time the members
of Cj(t), with j = 1, ..., N , and to assign mobile cameras to
targets to minimize the tracking error, maximize the target
observation period and minimize energy consumption.

3. Static cameras
Static cameras perform target detection (e.g. using [4])

and assign a priority to each target based on application-
specific knowledge1. We assume that the inter-camera tar-
get association is solved using uniquely identifiable features
for each target. Moreover, we assume that cameras are cal-
ibrated (e.g. using [1]) with knowledge of both intrinsic
(e.g. focal length) and extrinsic (e.g. location and orienta-
tion) parameters, so that image-plane observations can be
mapped onto a common ground plane.

Cameras self-organize in tracking groups via messaging
with neighbors and perform distributed tracking via lossless
wireless communication links whose delays are negligible
with respect to the target speed.

3.1. Distributed tracking

We use the Iterative Covariance Intersection (ICI) algo-
rithm for distributed tracking as it does not require prior
knowledge of the network connectivity [6, 8]. Each camera
ci ∈ Cj(t) performs local tracking based on the Informa-
tion Filter (IF) and iteratively exchanges in a synchronous
manner2 its local update with neighbors to agree on a state
estimate [8].

Let zij(t) ∈ R2 be the measurement generated by tar-
get oj in ci at t. The measurement model is zij(t) =
Hisij(t) + νij(t), where Hi ∈ R2×4 is the projection ma-
trix from the measurement space of ci to the state space, and
νij(t) is an additive Gaussian noise with covariance matrix
Rij ∈ R2×2 [7]. Each camera ci ∈ Cj(t) first calculates the
information vector iij(t) ∈ R4 and the information matrix
Iij(t) ∈ R4×4 for target oj :

Iij(t) = HT
i Rij(t)

−1Hi

iij(t) = HT
i Rij(t)

−1zij(t). (1)

Iij(t) and iij(t) are set to 0 when camera ci does not
observe oj at t.

1While the priority can be time varying, for simplicity in this work we
consider it to be a constant.

2For asynchronous distributed tracking, please refer to [5].

After K iterations (we set K = 3 as in [8]), each camera
ci ∈ Cj(t) has a local state estimate on the ground plane
sij(t) and a corresponding covariance matrix Pij(t) based
on the following procedure: ci computes the initial local
updates Γ0

ij(t) ∈ R4×4 and ψ0
ij(t) ∈ R4 that are to be ex-

changed with neighbors:

Γ0
ij(t) = Iij(t) + P−ij(t)

−1

ψ0
ij(t) = iij(t) + P−ij(t)

−1s−ij(t), (2)

where s−ij(t) is the predicted target state from the previous
estimation and P−ij(t) ∈ R4×4 is the corresponding covari-
ance matrix.

At each iteration k, ci ∈ Cj(t) sends Γk−1
ij (t) and

ψk−1
ij (t) to its neighbors Ni(t) that are tracking oj at t and

updates Γkij(t) and ψkij(t) as:

Γkij(t) =
∑

ci′∈Cj(t)∩Ni(t)

µki′j(t)Γ
k−1
i′j (t)

ψkij(t) =
∑

ci′∈Cj(t)∩Ni(t)

µki′j(t)ψ
k−1
i′j (t), (3)

where µki′j(t) is the weight for fusion calculated as in [6].

3.2. Messaging

Static cameras that are observing the target oj at t be-
come members of the tracking group Cj(t) and inform their
neighbors via a message that contains (i) the target descrip-
tion for identity association, (ii) the viewing utility, which
defines how well the target is viewed by the camera, and
(iii) the states of neighboring mobile cameras.

Messaging makes each member camera aware of the
viewing utility of other member cameras as well as the pres-
ence and states of mobile cameras within their communica-
tion range.

If member cameras in the same tracking group cannot
directly communicate because of their limited radio range,
other cameras may join the group and behave as bridge to
enable communication among cameras involved in tracking
the same target. A camera identifies itself as bridge based
on the received messages. A member camera that receives
other member messages sends a confirmation message to
help cameras that are not involved in tracking understand
whether they are needed as bridge cameras. A camera be-
comes a bridge when it receives multiple member messages
but less confirmation messages than member messages. The
bridge camera then informs neighbors via a bridge mem-
ber message, which contains the state of neighboring cam-
eras and the information from all the received member mes-
sages.

If a member camera does not receive any member mes-
sages or bridge member messages, the camera is either the



only camera viewing that target or it is isolated (i.e. no
member neighbors are present within a 2-hop communica-
tion range). This camera will therefore perform individual
tracking instead of distributed tracking.

When a target has to be tracked with priority and there
is no mobile camera tracking that target, the closest static
camera to a mobile camera sends a request message. This
message contains the target description, the estimated target
state, the target priority and the states of mobile cameras
that will receive the same request.

4. Mobile cameras

Mobile cameras select a target to track based on infor-
mation received from static cameras. With the proposed
messaging scheme, a mobile camera in a tracking group is
aware of the presence of other mobile cameras and their
viewing utility. If there are multiple mobile cameras in the
same tracking group, the mobile camera with the highest
viewing utility continues tracking while the other mobile
cameras switch to idle or start tracking another target.

We assume that mobile cameras are aware of their own
locations via communication with static cameras and on-
board odometry measurements [3]. When there is move-
ment, each mobile camera updates its connectivity table
with neighboring cameras via radio signaling [18].

4.1. Target selection

After receiving multiple tracking requests, a mobile cam-
era selects one target to track and starts moving to track that
target jointly with static cameras. We treat the target that
a mobile camera is currently tracking as important as other
candidate targets that the mobile camera might receive re-
quests to track. This allows the mobile camera to switch to
track a target with higher priority.

Let CM,R
j (t) be the set of mobile cameras that receive

the request to track the same target oj and let Ωi(t) be the
set of candidate targets that mobile camera ci receives the
requests to track.

For each oj ∈ Ωi(t), the mobile camera ci locally de-
cides to track the target with the highest utility aij(t). The
value of aij(t) is proportional to the target priority wj and
inversely proportional to the energy cost for the mobile
camera to capture the target.

While the energy cost is often approximated as the robot-
target distance dij(t) between ci and oj [13], we also take
into account vrij(t), the relative velocity between the mobile
camera and the target. We approximate the energy cost as
the expected robot-target distance d̂ij after a time period ∆t
(see Fig. 1), assuming that vrij(t) is constant during ∆t:

d̂ij(t) =
∣∣dij(t)− vr,pij (t)∆t

∣∣ , (4)

Figure 1. The distances between a mobile camera ci and two tar-
gets, o1 and o2. pr

ij and vr
ij are the relative position and velocity

between ci and oj .

where ∆t = 1 second in our experiments and vr,pij (t) is the
relative speed of the mobile camera toward the target, which
is computed as the scalar projection of the relative velocity
vrij(t) onto the relative position prij(t):

vr,pij (t) =
vrij(t)

T · prij(t)∣∣prij(t)∣∣ . (5)

Let gij(t) account for the energy cost as follows:

gij(t) = 1− d̂ij(t)

rv + rc
, (6)

where the normalization by the sum of the viewing range,
rv , and the communication range, rc, takes into account the
largest possible distance between a target and a mobile cam-
era that receives a request to track that target.

Because multiple mobile cameras may receive the same
target-tracking request. In our scenario mobile cameras do
not communicate with each other, a mobile camera should
discount the utility for the target to reduce the probability of
selecting the same target as another mobile camera. Thus,
we define the utility aij(t) as:

aij(t) = wj
gij(t)

2∑
ci′∈CM,R

j (t) gi′j(t)
. (7)

Let Λi(t) be the set containing the indices of all the tar-
gets in Ωi(t). The mobile camera ci will select the target
oj∗ with the highest utility, defined by the index

j∗ = arg max
j′∈Λi(t)

aij′(t). (8)

4.2. Motion strategy

Once a target is selected, the mobile camera ci computes
the control ai(t) for updating the camera state in order to
improve tracking accuracy in an energy-efficient manner.
Let ui(t) = [vi(t), αi(t), βi(t)]

T be the velocity of the



mobile camera ci, where vi(t) is the speed along the head-
ing direction ϕi(t), αi(t) is the steering angular speed of the
robot and βi(t) is the panning angular speed of the camera.
The control ai(t) is the acceleration ai(t) = u̇i(t).

We consider that the best view of a target is in the center
of the FoV. Let δij(t) be the angular difference between the
camera orientation and the target bearing angle. When the
target is observed by the mobile camera, the target-robot
distance dij(t) and δij(t) can be inferred from the image
plane with the knowledge of camera calibration or target
dimensions. Otherwise, dij(t) and δij(t) can be computed
with the mobile camera state and ground-plane target state
received from static cameras.

Let ρdij(t) and ρδij(t) be the ratio of the distance and an-
gular difference to the center of the FoV with respect to half
of the viewing range, rv2 , and half of the viewing angle, φ2 :

ρdij(t) =
2
∣∣dij(t)− 1

2rv
∣∣

rv
(9)

and

ρδij(t) =
2δij(t)

φ
. (10)

The closer ρdij(t) and ρδij(t) are to 0, the better the view
of the target is.

We design two cost functions (see Fig. 2) to encode the
objectives of maintaining the target at a desired position in
the FoV that produces the best view on the target (J1) and of
generating an energy-efficient path toward the target (J2).
J1 penalizes the deviation of the target position from the
center of the FoV:

J1 = exp
(√

ρdij(t)
2 + ρδij(t)

2
)
, (11)

whereas J2 penalizes the energy consumption during the
motion of ci:

J2 = κ exp (EN,i(t)) , (12)

where EN,i(t) is a normalized energy consumption that
takes into account the kinetic energy, Ek,i, and the energy
to overcome resistance, Ef,i [12]; the constant κ constrains
J2 so that J1 always plays a major role during motion plan-
ning.

The kinetic energy can be represented as:

Ek,i(t) = mi max(v̇i(t)d
v
i (t), 0)

+ Ipi max(α̇i(t)d
α
i (t), 0)

+ Ici max(β̇i(t)d
β
i (t), 0), (13)

where mi is the mass of the mobile camera; Ipi and Ici
are the moment of inertia around the rotation axis for the
robotic platform and camera, respectively; and dvi (t), dαi (t)

and dβi (t) are the camera displacements.

(a) (b)

Figure 2. The response of the two cost functions: (a) J1 when
rv = 50m and φ = 90◦; (b) J2 when κ =

√
2/2.

The energy to overcome resistance is Ef,i(t) =
µF |dvi (t)|, where µ is the coefficient of friction that de-
pends on the contacting materials and F is the pressure
force between the two contacting materials [12].

We define the normalized energy cost as:

EN,i(t) = eki
Ek,i(t)

Emax
k,i

+ efi
Ef,i(t)

Emax
f,i

, (14)

where Emax
k,i and and Emaxf,i are the maximum energy con-

sumptions for ci at each component; and eki and efi are the
weights for each component. Each energy component will
contribute equally in our experiments.

We use a model predictive controller (MPC) with a time
horizon Th for active tracking [14]. A mobile camera ci
at t computes a control sequence aTh

i (t) = {ai(τ) : τ ∈
[t, t+ Th − 1]} by minimizing λ1J1 + λ2J2, subject to{

ui(τ) 6 umax, τ ∈ [t, t+ Th]
ai(τ) 6 amax, τ ∈ [t, t+ Th] .

(15)

For simplicity, the disturbances from the environment
and noises of the kinematic model are not considered in this
work.

To solve this problem we employ the fmincon tool of
MATLAB [14]. A global optimal solution for this nonlinear
constrained optimization problem is hard to achieve with a
non-convex objective function and the solution depends on
the initial searching point. We accept local optimality and
always initialize the starting point as ai(t) = [0, 0, 0].

5. Validation
We validate the proposed framework in terms of tracking

accuracy, target observation time and energy efficiency. We
first quantify the improvement on tracking accuracy and en-
ergy efficiency achieved by the proposed MPC controller
(MobStaMPC) and compare it with distributed tracking
with only static cameras [19] (OnlyStatic) and distributed
tracking with both static and mobile cameras using a one-
step-ahead optimal controller [20] (MobStaOSA). We then



(a) (b)

Figure 3. (a) Scenario I: 6 static cameras in a campus square. (b)
Scenario II: 15 static cameras in a public square. Dashed lines
indicate when cameras can communicate (1 hop) with each other.

evaluate the robot-target assignment strategy in terms of
the target observation time and energy cost, and compare
it with a centralized assignment (the performance upper-
bound) using the Hungarian algorithm [10] and a distributed
assignment considering only distance as the cost [13].

We simulate two scenarios with static cameras posi-
tioned as in real deployments in a campus square and a
public square (Fig. 3). Scenario I is a 30 m × 30 m cam-
pus square with 6 static cameras deployed to cover the en-
trance of shops and buildings (Fig. 3(a)). Scenario II is
a 100 m × 100 m public square with 15 static cameras
deployed to monitor road traffic and access to buildings
(Fig. 3(b)). For both scenarios the view angle is φ = 0.5π.
In scenario I, we set the view range rv = 15m and the com-
munication range rc = 20 m. In scenario II, we set rv =
30 m and rc = 40 m. Mobile cameras move freely with
umax = [3 m/s, 0.20π rad/s, 0.25π rad/s] and amax =[
1.5 m/s2, 0.20π rad/s2, 0.25π rad/s2

]
. Point targets

move more slowly than mobile cameras and have an accel-
eration that follow a zero-mean bivariate Gaussian distribu-
tion (covariance matrix: diag([0.3 0.3])). We initialize the
target priority randomly with a uniform distribution.

We quantify tracking accuracy as mean tracking error, ε,
i.e. the difference between the estimated target state sj(t)
within Cj(t), for j = 1, · · · , N , and the corresponding
ground-truth state ŝj(t) averaged over the number of tar-
gets, N , and the whole experiment duration, T :

ε =
1

TN

T∑
t=1

N∑
j=1

‖sj(t)− ŝj(t)‖ . (16)

We also quantify the observation ratio, η, i.e. the ratio
of the temporal interval during which a target is observed,
weighted by the target priority:

η =
1

TW

T∑
t=1

N∑
j=1

Bj(t)wj , (17)

Figure 4. Simulated target trajectories. A starting point is indicated
with a filled square. Colors indicate the speed of the target (m/s).

(a) b

Figure 5. Comparison between MobStaMPC (the proposed frame-
work), OnlyStatic (using only static cameras) and MobStaOSA
(a motion strategy with a one-step-ahead optimal controller): (a)
mean tracking error, ε, and (b) energy cost, e for mobile cameras.

where W =
∑N
j=1 wj and Bj(t) is a binary func-

tion indicating whether oj is observed at t. Specifi-
cally, we define the observation ratio of mobile cameras as
ηM = 1

TW

∑T
t=1

∑N
j=1B

M
j (t)wj , where BMj (t) indicates

whether oj is observed by a mobile camera at t. Targets
with higher priority and observed for longer will lead to a
larger η.

Finally, we quantify the normalized energy consumption,
e, i.e. the total normalized energy of all mobile cameras av-
eraged over N and T :

e =
1

TN

T∑
t=1

NM∑
i=1

EN,i(t), (18)

where NM is the number of mobile cameras.
We first validate the improvements on tracking accu-

racy and energy efficiency brought by the proposed mo-
tion strategy when targets are initialized at the center of the
FoV of mobile cameras. We set the objective function as
J = 0.5J1 + 0.5J2 with time horizon Th = 3. We test
50 trajectories under scenario I. Each trajectory is indepen-
dently generated and lasts 50 time steps (Fig. 4). Fig. 5(a)
shows the mean tracking error and corresponding standard
deviation for the first 10 tested trajectories (see Fig. 3(b)).
The result with only static cameras is plotted in black as
a baseline for comparison. The mean tracking error of



(a) (b)

(c) (d)

Figure 6. Comparison between Dis-U (the proposed local selection
utility), Cen-U (the centralized assignment), Dis-D (the distance-
based selection) in terms of observation ratios, η and ηM , with
an increasing number of mobile cameras in (a, b) scenario I and
(c, d) scenario II. The result of ’static’ (using static cameras only)
is shown as reference.

all tested trajectories is 0.73 m with OnlyStatic and 0.34
m with the proposed MobStaMPC, indicating > 50% im-
provement in tracking accuracy. Compared to the one-step-
ahead optimization (MobStaOSA), MobStaMPC achieves
similar tracking accuracy with much less energy due to the
multiple-step-ahead planning.

We further validate the improvements of target obser-
vation time and energy reduction brought by the pro-
posed robot-target assignment strategy (Fig. 6 and Fig. 7).
The performance achieved with the centralized assignment
serves as a performance upper bound as it uses the (ideal)
knowledge of all robots and targets. The centralized strat-
egy updates the assignment at each time step using the
generic form of the selection utility. We also analyze the
influence of the target selection criteria on the target obser-
vation ratio and the energy cost by testing the criterion us-
ing the proposed utility and the target-robot distance only.
In the following experiments, we test the performance with
an increasing number of mobile cameras, NM , for tracking
5 targets with different priorities. We initialize the location
of mobile cameras using a uniform distribution. Results are
averaged over 10 independent runs.

Fig. 6 compares the observation ratios when the num-
ber of mobile cameras increases. The improvement in the
observation ratio of mobile cameras, ηM , saturates when
NM = N in scenario I and when NM > N in scenario II.
This is because in a smaller area (scenario I) each target is
more likely to be tracked by a mobile camera, while more

(a) (b)

Figure 7. Comparison between Dis-U (the proposed local selec-
tion utility), Cen-U (the centralized assignment) and Dis-D (the
distance-based selection) in terms of energy cost, e, with an in-
creasing number of mobile cameras in (a) scenario I and (b) sce-
nario II.

mobile cameras are required in a larger area due to their
limited communication range. The ηM achieved with Dis-U
approaches but cannot exceed that of the centralized assign-
ment (Cen-U) when NM ≤ N due to the limited available
knowledge on targets and robots.

The ηM achieved with Cen-U saturates around NM =
N in both scenarios and ηM may slightly deteriorate when
NM > N (Fig. 6 (b)). This is because Cen-U updates the
assignment at each time step, which may cause switching
between mobile cameras for tracking a target when there
are redundant mobile cameras. The switching can lead to
temporary target loss, which reduces ηM and increases the
energy cost, e. Such switching occurs more frequently in
a smaller area and this explains the larger deterioration on
ηM (Fig. 6 (b)) and energy cost with Cen-U (Fig. 7 (a)) in
scenario I, compared to that in scenario II.

The proposed Dis-U achieves a higher ηM than the
distance-based assignment (Dis-D) in both scenarios with
almost the same energy consumption (Fig. 7). Dis-D aims
to cover targets in an energy-efficient manner only based on
distance, which makes the robot-target assignment sensitive
to scene dynamics without guaranteeing longer observation
on targets with higher priority.

6. Conclusion

We presented a collaborative framework for target track-
ing with a mixed camera network composed of static and
mobile cameras. Mobile cameras move on demand based
on an individual target selection strategy based on local
knowledge only and using energy-efficient motion plan-
ning. The proposed strategy reduces energy consump-
tion compared to a one-step-ahead optimal controller and
achieves higher prioritized observation time compared to a
traditional distance-based assignment.

Future work includes introducing collision avoidance
constraints and modeling communication errors and delays.
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