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Multi-Tracker Partition Fusion
ObaidUllah Khalid, Juan C. SanMiguel, and Andrea Cavallaro

Abstract—We propose a decision-level approach to fuse the
output of multiple trackers based on their estimated individual
performance. The proposed approach is divided into three
steps. First, we group trackers into clusters based on the spatio-
temporal pair-wise correlation of their short-term trajectories.
Then, we evaluate performance based on reverse-time analysis
with an adaptive reference frame and define the cluster with
trackers that appear to be successfully following the target as
the on-target cluster. Finally, the state estimations produced by
trackers in the on-target cluster are fused to obtain the target
state. The proposed fusion approach uses standard tracker
outputs and can therefore combine various types of trackers.
We tested the proposed approach with several combinations of
state-of-the-art trackers, and also compared it with individual
trackers and other fusion approaches. The results show that
the proposed approach improves the state estimation accuracy
under multiple tracking challenges.

Index Terms—Visual tracking, Fusion, Online performance
evaluation, Tracker correlation

I. INTRODUCTION

V ISUAL tracking is widely used in applications such as
video surveillance, human-computer interaction, activ-

ity recognition and video indexing. A tracker faces several
challenges such as occlusions, clutter, changes in target scale
or appearance and variations in scene illumination. Because
no individual tracker can still provide accurate results for
all challenges [1], fusing complementary trackers whose
expected failures are uncorrelated can increase robustness.

Fusion can be performed at feature or decision-level [2].
Feature-based approaches fuse multiple features in a single
tracking framework to adapt to appearance changes [2], [3],
[4], [5], [6]. When the features have variable dimensionality
and range, adaptation methods are needed to integrate new
features [7]. Decision-level fusion combines the output of
multiple trackers [8], [9], [10], [7], [11], [12], [13], [14].
Fusion can happen sequentially [15], [11], [16], using out-
puts from specific trackers [8] or employing likelihood-based
fusion [13]; in parallel [17] or with a hybrid approach [18].

The online evaluation of the quality of current tracking
results uses current and past information only, and may
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help the fusion process [19]. In order to weight trackers
or features prior to fusion, online performance evaluation
identifies the trackers that follow the target and estimate the
accuracy of their outputs at run time [20]. Fusion approaches
estimate performance using target velocity [21], democratic
integration [6], filter uncertainty [22], likelihood [13] and
tracker correlation [17]. Existing performance evaluators
provide different score ranges for each tracker [2], require
specific trackers [20] or are computationally expensive [23].

In this paper, we propose a decision-level fusion frame-
work that combines the outputs of selected trackers over
time based on the spatio-temporal relationships of their
results. The main novelties of the proposed approach are
a method to identify the trackers that are expected to be on
the correct target and the definition of an adaptive reference
frame for online performance analysis. We group trackers
hierarchically based on their agreement in estimating the
target state in terms of spatial location and direction of move-
ment. Using this spatio-temporal agreement, we determine
which groups (clusters) of trackers are in the same region
and identify the one that is on-target. This identification
is achieved using an adaptive time-reversed performance
evaluation. This evaluation compares the results of trackers
running in the reverse temporal direction with the results
of the fused output at a specific frame. This specific frame
is adaptively determined via online performance evaluation
and motion analysis. The final output is then generated by
fusing the outputs of trackers within the on-target cluster
and the selected on-target cluster is propagated over time
until a split or merge is detected.

The paper is organised as follows: Section II discusses
the related work. The overview of the proposed framework
is given in Section III, while the tracker clustering and the
reverse-analysis evaluation are described in Section IV and
Section V, respectively. Experimental results are presented
in Section VI. Finally, Section VII concludes the paper.

II. RELATED WORK

In this section we discuss methods for online evaluation
of trackers and features, and their combination.

Tracker performance can be evaluated using trajectories,
observation likelihood or the spatial uncertainty of the
target hypotheses. Comparing target state properties such
as target velocity [21] to empirical thresholds limits the
approach to specific data. By the reversibility property of
Markov chains [23], tracker performance is evaluated using
another tracker running in reverse temporal direction until
a reference frame in which the tracker under evaluation
(forward) is assumed to be correct. Then, reverse-forward
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results are compared using the Mahalanobis distance at
the reference frame [23]. However, this reverse-analysis
considerably increases the computational cost. The tracker
likelihood can also be used as performance indicator [13].
However, distractors (i.e. objects with similar features to
those of the target) may produce a high likelihood thus
generating misleading measurements.

Performance measures can take advantage of multi-
hypothesis trackers such as the spatial uncertainty of the
hypotheses (particles) of particle filter (PF) to weight feature
contributions [2], to compute a feature rejection probabil-
ity [5] or to be employed jointly with reverse analysis [20].
When multiple trackers or features are used, performance
weights can be estimated as the distance to the fused
output [24], [6], the average change of multiple features [25]
or correlation among point trajectories [26]. Such weighting
often requires multiple features whose average result is
assumed to be accurate.

Fusion at feature level considers multiple visual features
to be combined in a single-tracker framework. An example
is the sum of feature likelihoods (colour histograms and
intensity gradients) [27]. Results can be improved using
a performance-based feature weighting, such as the fused-
feature distance of democratic integration [24], [6]. Appear-
ance models based on sparse coding [28] have also been used
for feature-level fusion, where the weighting is determined
by the contribution of the feature template to track the
target [29], while other approaches discard features far away
from the target model [30].

Decision-level fusion combines the output of multiple
trackers in cascade or in parallel. A cascade for fusion
defines an execution order where each tracker output is used
by the next tracker. Examples include the combination of
two trackers (region and shape) and two detectors (head and
motion for people tracking) [15]; the sequential execution
of the template-based Mean Shift (MS) and appearance-
based trackers [11]; and the integration of three PFs and
one Kalman filter (KF) [16]. Moreover, trackers can be
integrated within the framework of another tracker [8], [9].
For instance, a head tracker uses MS to improve the PF
tracker predictions [8].

In parallel tracker fusion, two trackers may be combined
using target motion [21] or probability density functions [7].
Moreover, tracker performance within a parallel framework
can be measured as disagreement with other trackers [17],
[31] or can be used to select the best tracker [32]. Other
approaches may use tracker correlation to improve the
overall tracking performance by correcting PFs [18] and
KFs [26]. These approaches determine the accuracy as the
spatial uncertainty of hypotheses whose value may vary
across trackers, thus making tracker fusion difficult.

Learning-based methods have also been proposed [33]
where labels (foreground/background) are assigned to image
patches. A Bayesian approach is employed for fusion where
tracker accuracy is the distance between the fused output
and the output of each tracker. Using likelihood as the per-

TABLE I
DECISION-LEVEL FUSION APPROACHES. KEY - C: CASCADE; P:

PARALLEL; S: SPATIAL; T: TEMPORAL; PDF: PROBABILITY DENSITY
FUNCTION; GLAD: GENERATIVE MODEL OF LABELS, ABILITIES AND

DIFFICULTIES [34].

Ref. Type
Reliability
evaluator

Tracker
correlation Fused

trackers
Fusion
methodS T S T

[11] C - - - -

All

Correction
[8], [9] - - - - Kernel-Bayesian

[7]

P

- - - - Product of PDFs
[14] 3 - - - Weighted sum
[33] 3 - - - GLAD
[21] 3 3 - - Correction
[17] 3 3 3 - Mixture of Gaussians
[18] 3 - - - Weighted sum
[26] 3 - 3 - Correction
[31] 3 3 3 -

Selected

Correction + Average
[35] 3 3 3 - Average

[12], [13] 3 - - - Interaction
Proposed 3 3 3 3 Average

formance estimator within tracker interaction and sampling
based approaches, the tracker with the highest likelihood
is chosen [12]. Similarly, multiple motion and appearance
models can be used to form a single compound tracker [13].

Decision-level fusion approaches are summarized in Ta-
ble I and compared with the proposed approach.

III. OVERVIEW

We propose a framework to cluster trackers over time
and to select the best-performing ones for fusion to improve
the overall accuracy of target state estimation. The proposed
approach is inspired by the test and select framework [36] for
ensemble combination where accurate classifiers are fused
assuming that their errors are diverse. Considering trackers
as classifiers, we extend this framework to video tracking by
introducing spatio-temporal correlation and adaptive online
performance evaluation (Fig. 1).

Let I = {It}Tt=1 be a video sequence of T frames and
F =

{
F k
}K
k=1

be a set of K trackers. Let the target state
xkt be a bounding box, defined by a four dimensional vector
[ukt , v

k
t , w

k
t , h

k
t ], where ukt , vkt are the target position; wkt

and hkt are its width and height, respectively. Each tracker
F k uses the observation zkt and the target model at frame
It−1, φkt−1, to estimate the target state at time t:

xkt = F k(xkt−1, z
k
t , φ

k
t−1), (1)

where xkt−1 is the state estimate (i.e. the tracker output) at
the previous time step.

Let on-target and off-target be the labels that indicate
whether a tracker follows the target successfully or not,
respectively. The goal is to identify the successful trackers
given the outputs xkt by labeling them as:

xkt→lkt ∈ {on-target, off-target} . (2)

We determine lkt by recognizing groups of trackers (clus-
ters) following the same region in the frame and identifying
the cluster with the on-target trackers C∗t = {Fn}Nn=1 ⊆ F



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 3

…

𝑥𝑡
1

Partition 

validation

ℙ𝑝,𝑡 𝑝=1

𝐾

ℙ𝑡
∗

𝐼𝑡
State 

selection

𝐹1

ℂ𝑡
∗

…

𝑥𝑡
𝑘

𝑥𝑡
𝐾

𝐹𝑘

𝐹𝐾

Partition 

generation
Fusion

…

Tracklet

correlation

buffer Δt1

………

Reverse 

evaluation

buffer Δt2
ℙ𝑡−1
∗

Split-

Merge 

detection
𝑧−1

ঀ𝑡 𝑥𝑡
𝑛

𝑛=1
𝑵

𝑥𝑡
∗𝑅∆𝑡1

𝑖,𝑗

𝑅∆𝑡1
1,2

𝑅∆𝑡1
𝐾−1,𝐾

…
…

……

Fig. 1. Block diagram of the proposed approach to fuse the output of K trackers.

(N ≤ K). Assuming that all the trackers are initialized with
a ground truth, the approach starts with a single on-target
cluster. When trackers fail, they split into different clusters,
of which only one (i.e. C∗t ) or none correctly tracks the
target. For each frame It we compute

(K
2

)
scores Ri,j∆t1

to determine spatio-temporal relationships between pairs
of trackers, measured as similarity of spatial location and
direction of movement of short-term trajectories (tracklet
correlation) over a temporal window ∆t1. These spatio-
temporal scores are then employed to generate partition
hypotheses {Pp,t}Kp=1 to divide the K trackers into clusters.
After validating the best partition P∗t by exploring the
correlations among tracklet data, the on-target cluster C∗t is
determined by online performance evaluation of the trackers
that are expected to be following the target. Such evaluation
uses reverse-tracking [23] over a sliding temporal window
∆t2 (Fig. 2), which requires standard tracker outputs (e.g.
bounding boxes), thus providing a generic evaluator across
trackers.

The proposed approach employs two temporal windows
∆t1 and ∆t2 (Fig. 3), during which data is buffered from
future and past time instants, respectively. The temporal
window used for tracklet correlation makes the proposed
approach suitable for applications that can tolerate a short
latency ∆t1.

C∗t is propagated until the detection of a split or a merge,
which happens when trackers leave or join the cluster C∗t ,
respectively. A split or merge indicates that some or all of
the on-target trackers may have failed. When such changes
occur, all trackers are re-evaluated to determine the new on-
target cluster C∗t in the partition P∗t .

Only the trackers belonging to the on-target cluster C∗t
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Fig. 2. Block diagram of the reverse evaluation that identifies the on-target
cluster C∗t .
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Fig. 3. Temporal windows ∆t1 and ∆t2 employed by the proposed ap-
proach to account for forward and backward data, respectively. Forward data
are used to determine the relationships among trackers via their trajectories
(Section IV). Backward data are used to check tracker performance via a
time-reversed evaluator (Section V).

are used to compute the final target state x∗t :

x∗t =
1

N

N∑
n=1

xnt . (3)

One advantage of the proposed clustering is that it helps to
reduce the computational load by avoiding to apply reverse-
evaluation over all trackers when they maintain their spatio-
temporal relationships over time.

IV. TRACKER CLUSTERING

A. Tracklet correlation

We combine spatial and temporal features of the short-
term trackers’ trajectories (tracklets) to obtain a set of pair-
wise correlation scores Ri,j∆t1

, for 1 ≤ i, j ≤ K with i 6= j;
for pairs of trackers F i and F j over a temporal window
∆t1. The spatial agreement for F i and F j is based on their
outputs xit and xjt at frame It:

Oi,jt =
2|Ait

⋂
Ajt |

|Ait|+ |A
j
t |
, (4)

where Ait and Ajt are the set containing the pixels of the
bounding boxes generated by tracker F i and F j , respec-
tively, and |.| is the cardinality of a set. Oi,jt ∈ [0, 1] and
a value of 1 (0) represents a full agreement (disagreement).
The spatial agreement over time is computed by averaging
Oi,jt over ∆t1:

Oi,j∆t1
=

1

∆t1

t+∆t1∑
t

Oi,jt . (5)

In order to estimate the agreement for motion direction,
we compute a score ri,j∆t1

using the directional feature ~dk of
each F k [37] over ∆t1 that encodes the trajectory direction:

~dkt =
(
ukt+∆t1 − u

k
t , v

k
t+∆t1 − v

k
t

)
. (6)
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Fig. 4. Weighting function ψ (top) and weighted directional score r̂i,j∆t1
(bottom) for directional feature normalization using λ = 10.

The directional similarity score ri,j∆t1
is computed between

F i and F j using the cosine similarity:

ri,j∆t1
= cos

(
(~dit ·

~
djt )/(|~dit| · |

~
djt |)

)
, (7)

where ri,j∆t1
∈ [−1, 1] and negative values represent (esti-

mated) targets moving in opposite directions.
The desired correlation score Ri,j∆t1

is obtained by com-
bining Oi,j∆t1

and ri,j∆t1
after normalization of ri,j∆t1

to [0, 1].
Since we are interested in an agreement on the direction of
motion, we seek values ri,j∆t1

∈ [0, 1] and define a weighted
directional similarity score r̂i,j∆t1

as:

r̂i,j∆t1
= ψ(λ, ri,j∆t1

) · ri,j∆t1
, (8)

where r̂i,j∆t1
∈ [0, 1] and ψ ∈ [−1, 1] is a weighting function

that assigns a constant weight to ri,j∆t1
∈ [0, 1], while ri,j∆t1

∈
[−1, 0] are given low weights. Such a function is defined as:

ψ(λ, ri,j∆t1
) =

{
1 if 0 ≤ ri,j∆t1

≤ 1,

−eλ·r
i,j
∆t1 if −1 ≤ ri,j∆t1

< 0,
(9)

where λ ∈ (0,∞) is the decay rate of ψ. Values of λ close
to zero give smooth transitions for ψ ∈ [−1, 0] turning into
high r̂i,j∆t1

values when ri,j∆t1
∈ [−1, 0]. High values of λ

give abrupt transitions for ψ turning into r̂i,j∆t1
values close

to zero. Fig. 4 shows the relations between ri,j∆t1
and r̂i,j∆t1

for λ = 10 (bottom graph) and between ri,j∆t1
and ψ (top

graph).
Ri,j∆t1

is finally computed as follows:

Ri,j∆t1
= ω ·Oi,j∆t1

+ (1− ω) · r̂i,j∆t1
, (10)

where ω ∈ [0, 1]. High (low) values of ω prioritize the spatial
overlap (trajectory direction), which can be useful for short
(long) ∆t1.

B. Partition generation

A single partition Pp,t of F is a collection of non-empty
clusters Cap,t (a = 1, ..., |Pp,t|) such that each tracker in F
is in exactly one Cap,t, i.e. all Cap,t are mutually disjoint.

At each time step, K trackers can be grouped into clusters
Cap,t, forming a single partition Pp,t, where |Pp,t| ∈ [1,K].
Let [.] represent a partition. For example,

[{
F 1, ......., F k

}]
means that all trackers are clustered together (|Pp,t| = 1,
initial condition) and

[{
F 1
}
, .......,

{
F k
}]

means that each
tracker is a single cluster (|Pp,t| = K).

Our aim is to hypothesize a set of partitions {Pp,t}Bp=1
to cluster the trackers. All possible partitions Pp,t can be
systematically enumerated with an exhaustive search [38].
The set size is given by the Bell number B [39], which
increases exponentially with K. For example, with K = 8
trackers B = 4140 partitions are generated.

To reduce the computational complexity, we use a greedy
search that determines the most plausible partitions for a
given number of clusters. Since the optimum number and
composition of clusters is unknown, we take advantage of the
hierarchical structure of the tracker relationships to generate
a set of partitions whose cardinality ranges from 1 (i.e. a
single cluster) to K (i.e. each tracker is a cluster), with
K << B.

We use hierarchical clustering (HC) [40] to determine the
relationships between trackers based on the pair-wise tracker
correlation scores (Ri,j∆t1

). Based on the distance between
the trackers’ outputs, we obtain a dendrogram, which is
inspected by a divisive (top-down) approach to determine
each partition Pp,t. The search starts with the partition that
groups all trackers in one cluster P1,t. Recursively moving
down the tree, a different Pp,t is generated at each level,
with the final partition having each tracker in a separated
cluster PK,t. A partition Pp,t is obtained as:

Pp,t = f(β∗(p)), (11)

where p = 1, ...,K and f(β∗) is a HC-based function
that provides a cluster partition given an optimum distance
threshold β∗, which is computed as:

β∗(p) = argmin
β
{|f(β)| − p} , (12)

where β = 0, ...,max{Ri,j∆t1
}.

The proposed greedy search has a linear relationship
between the size of {Pp,t}Kp=1 and K, which significantly
speeds up the search. Fig. 5(a) and Fig. 5(c) show an
example for four trackers and the scores for their spatio-
temporal relations, which are used to compute the dendro-
gram illustrated in Fig. 5(b).

C. Partition validation

After generating the set of partitions {Pp,t}Kp=1, the ob-
jective is to select the partition P∗t that best represents
the spatio-temporal relations among trackers. We therefore
define the score S (Pp,t) as:

S (Pp,t) =
1

|Pp,t|

|Pp,t|∑
a=1

Q
(
Cap,t

)
, (13)
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Fig. 5. (a) Tracking results for frame 9 of the MCTTR0205a sequence
(TRECVID) —: F 1; —: F 2; —: F 3; —: F 4. (b) The dendrogram obtained
by hierarchical clustering. (c) Pair-wise tracker correlations scores. (d)
Hypothesized partitions and cluster scores, where P3,t has the highest score.

where Q
(
Cap,t

)
is the score for a single cluster Cap,t ∈ Pp,t.

S (Pp,t) determines the partition P∗t as:

P∗t = argmax
p
{S (Pp,t)} , (14)

where p = 1, ...,K and Q
(
Cap,t

)
is dependent upon the

pair-wise relationship score between trackers F i and F j

in Cap,t, which is obtained in the tracklet correlation block
(Section IV-A).

The score Q
(
Cap,t

)
is computed as:

Q
(
Cap,t

)
=


1
ν

∣∣∣Ca
p,t

∣∣∣∑
i=1

∣∣∣Ca
p,t

∣∣∣∑
j=1

Ri,j∆t1
if

∣∣∣Cap,t∣∣∣ > 1,

1− max
b∈1,...,|Pp,t|

(
Q
(
Cap,t

⋃
Cbp,t

))
if

∣∣∣Cap,t∣∣∣ = 1,

(15)

where ν =

(∣∣Cap,t∣∣
2

)
is the total number of tracker-pair

combinations within the cluster. Since a pair-wise score for a
single tracker in a cluster,

∣∣Cap,t∣∣ = 1, cannot be obtained, we
compute its pair-wise scores with trackers in other clusters.
Therefore Cap,t

⋃
Cbp,t indicates the hypothetical case where

the tracker in Cap,t becomes part of cluster Cbp,t, and b is any
of the remaining clusters within Pp,t (b 6= a).

When each tracker is a single cluster, i.e. |Pp,t| = K, each
cluster score Q

(
Cap,t

)
is computed as:

Q
(
Cap,t

)
= 1−Q

(
Cbp,t

)
, (16)

where Cbp,t is the cluster containing all trackers. Fig. 5(d)
shows the computed cluster and partition scores, where P3,t

achieves the highest score.

D. Split-Merge detection

After determining P∗t , the split-merge detection step iden-
tifies changes between P∗t and the previous partition P∗t−1.
Such changes may occur due to trackers leaving or joining
the on-target cluster in the previous time step C∗t−1 ∈ P∗t−1,
hence modifying the structure of P∗t−1. Thus, C∗t−1 cannot
be propagated to the current time and reverse-evaluation

is required to identify the current C∗t . We apply reverse-
evaluation over a set of trackers Yt, selected as:

Yt =

{
C∗t−1 if P∗t−1 ≡ P∗t ,
P∗t otherwise, (17)

where the condition P∗t−1 ≡ P∗t checks the similarity
between the number of clusters and their members (i.e.
trackers). When this condition is satisfied, an existing cluster
Cat ∈ P∗t equivalent to C∗t−1 is used at the current time.
However, when a split or merge occurs, all the trackers in
P∗t are evaluated.

V. ‘On-target’ CLUSTER IDENTIFICATION

We evaluate the performance of each tracker in the set
Yt (tracker selection block in Fig. 2). This performance
evaluation either determines the on-target cluster C∗t of the
valid partition P∗t or validates the on-target cluster from
the previous time step C∗t−1. We cast this problem as an
online tracker evaluation and use the time-reversibility of
target motion to assess the performance of the trackers. We
first review reverse-based evaluation methods and then we
present our proposed improvements.

A. Reverse-based online evaluation

Reverse-based evaluation [23] measures the performance
of a tracker during runtime using the generated results.
For each frame where we evaluate the tracker, a reversed-
tracker (i.e. the same tracker operating in reverse-time) is
applied. Using the tracker output xkt , as the reverse-tracker
initialization xk,−t , the reverse-tracker obtains its output as:

xk,−t−1 = F k(xk,−t , zkt , φ
k
t ), (18)

where xk,−t−1 is the reverse-tracker output at time t− 1. Then
the result of the reverse-tracker and that of the tracker are
compared to obtain a similarity score θkt by means of the
Mahalanobis distance between the likelihood distributions of
the forward and reverse target estimations. This comparison
is performed at a certain time instant tref , known as refer-
ence frame Iref . Iref is a frame where the tracker is known
to be on-target and it is usually Iref = I1 [23], i.e. the frame
where the target is initialized.

This approach has two major limitations. First, the
forward-reverse similarity uses the Mahalanobis distance
that returns unbounded scores θkt ∈ [0,+∞), which can have
different range of values depending on the trackers employed
in the fusion framework. Hence θkt may be inappropriate to
compare the trackers to be combined. Second, running the
reverse tracker until the first frame implies an exponential
growth in computational time. A faster approximation is
proposed where Iref is moved ahead in time. However,
tracker errors are accumulated over time by the reverse-
tracker, thus leading to drift [41]. For example, if the tracker
loses the target and gets locked on the background the
forward-reverse similarity may give high scores θkt , since the
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reverse-tracker is incorrectly initialized by the wrong tracker
estimations.

We address these shortcomings for reverse-tracking eval-
uation as described next.

B. Performance score and reference frame update

For the limitation of unbounded θkt scores, we compare
the reverse-tracker and fused outputs to obtain a θkt ∈ [0, 1]:

θkt = G(xk,−ref , x
∗
ref ), (19)

where xk,−ref and x∗ref are the reverse-tracker and fused
outputs at Iref , respectively; G defines the output similarity
and is computed using (4) where Ait and Ajt are replaced
by Ax

∗

ref and Ak,−ref , respectively. Ax
∗

ref and Ak,−ref are the sets
containing the pixels of the bounding boxes of x∗ref and
xk,−ref , respectively.

For the limitation of the exponential growth of computa-
tional time when Iref=1, we update Iref over time so that
the computational cost is bounded and reverse-evaluation can
be applied to long sequences. We implement such update
assuming that the fused output is on-target and that the target
has changed position from Iref to the current frame, thus
making the motion information useful for reverse-analysis.

The motion of bounding boxes is minimal when the
tracker is on-target and the target is static; or when the
tracker drifts from the target and gets locked onto a static
background region. Because it is difficult to differentiate
between these two situations, we analyze significant motion
changes of the trackers compared with their average mo-
tion. The maximum motion Mk is computed over temporal
window ∆t2 using F k trajectory (Fig. 3), and the top-left
(uk1,t, v

k
1,t) and bottom-right (uk2,t, v

k
2,t) coordinates of the

bounding box. Motion for uk1 over ∆t2 is computed as:

Muk
1

= 1
∆t2

t∑
t′=t−∆t2

(
Muk

1,t′
−Muk

1,t′−1

)
. (20)

Motion for vk1,t, u
k
2,t and vk2,t is computed using (20),

where Muk
1

is replaced by Mvk1
, Muk

2
and Mvk2

, respectively.
Mk = max(Muk

1
,Mvk1

,Muk
2
,Mvk2

) returns the maximum

motion for F k. Mx∗= 1
∆t2

t∑
t′=1

(Mx∗
t′
−Mx∗

t′−1
) determines the

motion of the fused output, which is used as a common
threshold to compare the motion of all trackers in the
framework.

The performance of each tracker is computed using (19).
To determine a single Iref for all trackers, we use max(Mk)
and max(θkt ) to select the best performing tracker for that
temporal window.

We adaptively estimate and update Iref by combining
motion analysis and performance of the tracker as:

Iref =

{
It−∆t2 if max(Mk) ≥Mx∗ and max(θkt ) ≥ τ1,
Iref otherwise,

(21)
where τ1 = 0.5 is the minimum tracker accuracy [1].

TABLE II
SEQUENCES USED IN THE EXPERIMENTS. KEY - BC: BACKGROUND

CLUTTER; P: POSE CHANGES; O: OCCLUSIONS; I: ILLUMINATION
CHANGES; S: SCALE CHANGES; M: MOTION CHANGES; BS:

BACKGROUND SIMILARITY.

Dataset Sequence name Target Size Total Challenges
Class Target Frame Frames

Students
P1

University
Students

Person 21 x 75
720 x 576

250 BC, P, O, I

P2 Person 22 x 69 250 BC, P, I

P3 Person 25 x 61 165 P, I

CAVIAR

P4 Browse WhileWaiting1 Person 50 x 24

384 x 288

200 P, I

P5 OneLeaveShopReenter1Front Person 16 x 56 195 P, I, S, BS

P6 OneLeaveShopReenter2front Person 14 x 50 300 P, I, S, BS

P7 ThreePastShop2cor Person 56 x 142 170 P, I, S

PETS

P8 S2.L2 walking Person 14 x 50

768 x 576

140 P, I, S, BS

P9 PETS2001 Dataset 1 Vehicle 56 x 142 150 P, I, S

P10 S2.L1 walking Person 22 x 68 150 BC, I,S

P11 PETS2001 Dataset 1 Vehicle 72 x 56 180 S, M

P12
S2.L1

walking

Person 72 x 56 90 O, M

P13 Person 72 x 56 150 M, O, P

P14 Person 72 x 56 110 S, M

LTDT P15 NissanSkylineChase Person 37 x 21 640 x 275 300 I, M, S

David P16 David Indoor Head 91 x 116 320 x 240 130 I, S, M, BS

AVSS2007 P17 Abandoned baggage Person 60 x 240 720 x 576 200 P, I

TRECVID
P18

MCTTR0205a
Person 72 x 226

720 x 576
50 P, I, BS

P19 Person 64 x 204 40 P, I, BS

P20 Person 64 x 204 40 I, M, BS

MIT
Traffic

P21 MV2 001 Vehicle 34 x 26 720 x 480 160 I, S, M

P22 MV2 006 Vehicle 70 x 36 720 x 576 160 O, I, M

C. On-target cluster selection/update

Reverse-evaluation identifies the on-target trackers by
using the individual performance scores θkt of trackers in
Yt. Trackers with θkt ≥ τ1 are labeled as on-target, enabling
the method to select C∗t as the cluster Cat with all on-target
trackers:

C∗t = {Cat ∈ P∗t : lkt = on-target, ∀F kt ∈ Cat }. (22)

VI. EXPERIMENTAL RESULTS

A. Setup

1) Dataset: For evaluating the proposed approach, multi-
Tracker Partition Fusion (TPF), we consider the fol-
lowing datasets: Students1, CAVIAR2, PETS (20093 and
20014), LTDT5, TRECVID20096, MIT Traffic7, David8 and
AVSS20079. We have selected 22 sequences (3580 frames)
to cover indoor and outdoor scenarios containing tracking
challenges such as occlusions, background clutter, pose,
motion and illumination changes. Table II describes the
selected sequences and Fig. 6 shows the target initializations.

1http://graphics.cs.ucy.ac.cy/research/downloads/crowd-data
2http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/
3http://www.cvg.reading.ac.uk/PETS2009
4http://www.cvg.reading.ac.uk/slides/pets.html
5http://www.micc.unifi.it/LTDT2014
6http://trecvid.nist.gov/trecvid.data.html#tv09
7http://www.ee.cuhk.edu.hk/∼xgwang/HBM.html
8http://www.cs.toronto.edu/∼dross/ivt/
9http://www.avss2007.org/
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2) Trackers: We apply TPF to combinations of up to eight
trackers using publicly available authors’ implementations.

The first tracker is the Sparse features based Tracker
(ST) [42], which is PF-based and uses sparse (intensity)
features to generate the target appearance model. The Maxi-
mum a Posteriori criterion is employed to estimate the target
state. The second tracker is the Adaptive Fragments-based
Tracker (AFT) [43] that models the target appearance with
various fragments. Fragment reliability is based on colour
similarity between the current and previous fragment, to
integrate highly-reliable fragments within a PF framework.
The third tracker is the Locally Orderless Tracker (LOT) [44]
that divides the target into superpixels using the HSV colour
space and employs a PF to track the target. The fourth tracker
is the Incremental Visual Tracker (IVT) [45] that performs
on-line updating to account for appearance changes, and a
PF to track the target over time. The fifth tracker is the
scale and orientation Adaptive MS Tracker (AMS) [46], that
estimates the changes in scale and orientation of the target
using the MS framework by employing Gaussian kernels and
image moments. The sixth tracker is the Fast Compressive
Tracker (FCT) [47] that projects the original image to a low-
dimensional space. The projected features are then used to
formulate tracking as a binary classification task via a naive
Bayesian classifier. The seventh tracker is the L1 Tracker
(L1T) [48], which is based on PF and models the target by
sparse linear combinations of target and trivial templates (set
of unit vectors). Assuming an affine motion model, tracking
is performed by solving the L1 minimization problem. The
eighth tracker is the Least Soft-Threshold Squares Tracker
(LSST) [49], which is based on PF and performs linear
regression via least-soft threshold squares distance between
the observation and the target model.

We have implemented six TPF configurations: TPF3 (ST,
AFT, LOT), TPF4 (ST, AFT, LOT, IVT), TPF5 (ST, AFT,
LOT, IVT, FCT), TPF6 (ST, AFT, LOT, IVT, FCT, AMS),
TPF7 (ST, AFT, LOT, IVT, FCT, AMS, L1T) and TPF8

(ST, AFT, LOT, IVT, FCT, AMS, L1T, LSST). We use
TPF3 for Section VI-C and VI-D, while Sections VI-E,
VI-F and VI-G use all six configurations.

We compare TPF with the eight selected trackers, two
recent trackers: STRUCK (STR) [50] and Kernelized Corre-
lation Filters (KCF) [3]; and three state-of-the-art decision-
level fusion approaches: Average fusion (AvgF), Symbi-
otic Tracker (SymT) [17] and Visual Tracker Sampler
(VTS) [13]. STRUCK [50] is a tracking-by-detection ap-
proach using SVMs with Gaussian kernels. Three features
have been tested (Haar, raw pixels and histograms) and we
report the results for histograms as they outperformed Haar
features and raw pixels. KCF [3] employs correlation among
filters based on histograms of oriented gradients features.
AvgF combines the eight trackers by assigning equal weights
to each tracker. SymT estimates trackers’ relationships based
on their spatial agreement only, and the tracker performance
is based on displacements between consecutive frames.
SymT has been re-implemented as described in [17]. VTS

Fig. 6. Target initializations. The order from top-left to bottom-right along
the rows corresponds to the row order in Table II.

combines two motion and four appearance models to get
eight trackers, using a likelihood-based tracker performance.
For STRUCK, KCF and VTS we use the authors’ implemen-
tation.

3) Parameters of the proposed approach: For TPF, the
temporal window for reverse-analysis is initially set to
∆t2 = 10 since it provides a good speed-accuracy trade-
off as shown in [23]. This value is updated if the motion
or the performance of trackers is below the thresholds (see
Section V-B). The temporal window for tracklet correlation
is set to ∆t1 = 10 to keep an initial forward-backward
symmetry for analysis, since no prior information is avail-
able to define the importance of one analysis over the other.
ω = 0.5 ensures equal weighting for the features. For (8),
we heuristically found that λ ∈ [5, 15] gives the desired ψ
behaviour so we used λ = 10. Finally, τ1 = τ2 = 0.5 as
previously set [1].

B. Evaluation measures

We measure the deviation from ground-truth data (GT ) as
the overlap score Ok,GTt between the output of tracker F k

and GT annotation using (4). Ait and Ajt are replaced by
AGTt and Akt , the sets of pixels contained in the GT and F k

target estimations, respectively. Values close to 1 (0) indicate
high (low) tracking performance. The mean of Ok,GTt is
computed for each sequence.

We also measure the performance of TPF when assigning
the on-target and off-target labels to trackers and clusters
from the valid partition P∗t . GT information is used to
compute the overlap score for each cluster OCa,GT

t by taking
the average of Ok,GTt for the trackers within the cluster.
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Fig. 7. Comparison of methods to generate partitions {Pp,t}Bp=1 of K
trackers. With exhaustive search (ES) B grows exponentially, while the
proposed clustering (PC) is bounded by B = K.

The on-target trackers are defined for Ok,GTt ≥ τ2 and
OCa,GT
t ≥ τ2 corresponds to the on-target cluster C∗t . To

simplify notation in the remaining sections, we denote the
mean ground-truth overlap Ok,GTt for each sequence as OG.

Using nTP , nFP , nTN and nFN as number of true
positives (TP), false positives (FP), true negatives (TN)
and false negatives (FN), we compute the precision, Pr =

nTP

(nTP +nFP ) , the recall, Re = nTP

(nTP +nFN ) and F -score =
2. Pr.RePr+Re , [1]. Values for the F -score close to 1 (0) indicate
high (low) accuracy. nTP (nFP ) and nTN (nFN ) are the
number of clusters or trackers correctly (incorrectly) labeled
as on-target and off-target, respectively.

C. Tracker clustering

We evaluate the performance of the partition generation
approach and the features employed to cluster the trackers.

1) Comparison of the proposed clustering (PC) with
exhaustive search (ES): Fig. 7 compares the generated set of
partitions {Pp,t}Bp=1 with an increasing number of trackers
K for both approaches. The accuracy of their results is
equal as PC and ES select the same valid partition. However
the size grows exponentially for ES with an increasing
K whereas PC keeps the size of {Pp,t}Bp=1 bounded with
respect to B = K.

2) Performance analysis of features: TPF combines the
features Oi,j∆t1

and r̂i,j∆t1
to get Ri,j∆t1

. An accuracy compari-
son at cluster and tracker-level is presented in Table III. The
results indicate that combining both features outperforms
using single features. At tracker-level, using both features
improves the F -score by 5% (7%) compared to using only
the overlap (direction) feature. Similarly at cluster-level an
improvement of 6% (7%) is observed in comparison to the
overlap (direction) feature.

Fig. 8 shows the tracking accuracy OG for the three
features, where ω = 0.5 improves results globally in 60%
of the sequences. Individual features do not always increase
performance since no feature is optimum for all situations.

D. On-target cluster identification

1) Performance analysis for motion: Table IV compares
the proposed approach with and without motion analysis

TABLE III
COMPARISON OF FEATURE COMBINATIONS FOR THE PROPOSED

APPROACH. RESULTS SHOW THE F -SCORE AT TRACKER-LEVEL AND
CLUSTER-LEVEL, WITH DIFFERENT FEATURE WEIGHTS ω IN (10).

Tracker-level Cluster-level
ω=0 ω=0.5 ω=1 ω=0 ω=0.5 ω=1

P1 .92 .90 .87 .94 .92 .89
P2 .98 .98 .97 .99 .99 .98
P3 .91 .92 .97 .87 .90 .98
P4 .87 .90 .94 .80 .87 .92
P5 .87 .90 .94 .93 .93 .99
P6 .44 .48 .45 .38 .42 .40
P7 .86 .78 .84 .99 .87 .87
P8 .88 .94 .93 .90 .97 .96
P9 .87 .81 .82 .99 .95 .84

P10 .46 .82 .37 .57 .90 .34
P11 .92 1 .94 1 1 .98
P12 .63 .77 .83 .60 .75 .83
P13 .88 .95 .87 .87 .98 .90
P14 .95 .96 .98 1 1 1
P15 .96 .97 .98 1 1 .99
P16 .81 .81 .93 .81 .88 1
P17 .52 .55 .56 .53 .67 .47
P18 .51 .93 .88 .60 .99 .96
P19 .98 .98 .98 1 1 1
P20 .95 1 .98 .97 1 1
P21 .95 .96 .96 .95 .98 .99
P22 .91 .95 .52 .99 1 .60

Mean .82 .88 .84 .85 .91 .86
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Fig. 8. Tracker accuracy OG using individual features, (ω = 1 for overlap
and ω = 0 for direction) and their equal combination (ω = 0.5).

(TPF and TPF’, respectively) to update Iref , in terms of the
F -score for selecting the on-target trackers. Results for P4-
P7 indicate the case when trackers might lose the target due
to background clutter and get fixed on the background. Since
TPF’ is unable to detect this situation in P4, it determines
the trackers to be always on-target. TPF improves TPF’ by
10%, 22% and 25% for ST, AFT and LOT, respectively (19%
mean improvement). For P5, P6 and P7 TPF improves per-
formance by 8%, 20% and 20%, respectively. P12 remains
occluded between frames 29-39 where ST loses the target
and becomes locked on to foreground objects being labeled
as on-target by TPF’, whereas AFT and LOT are labeled
as off-target. Using motion, TPF improves by 44%, 8% and
85% (40% mean improvement). For P18, ST loses the target
at frame 7 due to similar background. TPF’ assumes ST
to be on-target, while AFT and LOT are labeled as off-
target. TPF uses motion to correctly label AFT and LOT
as on-target achieving an overall improvement of 420% in
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TABLE IV
F -SCORE WITH (TPF) AND WITHOUT (TPF’) MOTION ANALYSIS FOR

THE THREE FUSED TRACKERS WITH THE REFERENCE FRAME Iref
UPDATED USING MOTION ANALYSIS (SECTION V). KEY - ST: SPARSE

TRACKER, AFT: ADAPTIVE FRAGMENTS BASED TRACKER; LOT:
LOCALLY ORDERLESS TRACKER.

ST [42] AFT [43] LOT [44] Sequence mean
for all trackers

TPF’ TPF TPF’ TPF TPF’ TPF TPF’ TPF
P1 .92 .88 .96 .92 .94 .90 .94 .90
P2 1 1 1 .97 1 .97 1 .98
P3 .95 .99 .95 .91 1 .87 .97 .92
P4 .85 .94 .78 .95 .59 .74 .74 .88
P5 .81 .87 .94 .92 .61 .76 .79 .85
P6 .26 .41 .41 .60 .52 .43 .40 .48
P7 .53 .67 .74 .82 .63 .78 .63 .76
P8 .88 .87 .99 .94 1 .98 .95 .93
P9 .90 .72 .90 .78 .89 .91 .89 .80

P10 .88 .75 .91 .83 .88 .82 .89 .80
P11 1 1 1 1 1 1 1 1
P12 .57 .82 .61 .66 .46 .85 .55 .77
P13 .79 .98 .83 .96 .94 .92 .86 .95
P14 1 .98 .96 .95 .91 .94 .96 .96
P15 .99 .98 .96 .96 .95 .99 .97 .98
P16 .91 .85 .99 .86 .88 .73 .93 .81
P17 .51 .54 .80 .40 .88 .48 .73 .47
P18 .29 .33 .05 .87 .08 1 .14 .73
P19 1 1 1 1 1 .95 1 .98
P20 1 1 .97 .99 1 1 .99 1
P21 .94 .88 1 1 1 .99 .98 .96
P22 .92 .96 .81 .97 .92 .86 .88 .93

Tracker
mean

.81 .83 .84 .87 .82 .86 .83 .85

comparison to TPF’. ST remains on-target for the first 6
frames of the sequence; where TPF incorrectly labels it off-
target in 5 out of the 6 frames, hence resulting in lower
values for TPF. For P17, the target does not move for most
of the sequence. ST and AFT lose the target at frame 45
due to similar background, and form a cluster. Due to the
stationary target, TPF assumes the ST-AFT cluster to be on-
target resulting in incorrect labels for all trackers, hence
decreasing performance by 35%. Globally, TPF improves
TPF’ by 2%, 4% and 5% for ST, FT and LOT, respectively.

2) Evaluation of fast approximation: Fig. 9 compares
the proposed update for the reference frame Iref with the
original approach [23]. The average result for three trackers
(ST, AFT, LOT) is presented in terms of the overlap score
OG between the GT and the existing forward estimation in
Iref obtained by [23] and TPF. TPF improves [23] in 16 out
of 22 sequences. Iref is updated only when tracker(s) are
found to be on-target. For instance, all three trackers fail
between frames 95-110 for P4. TPF detects and does not
update Iref after frame 110, whereas [23] keeps moving Iref
forward, thus accumulating tracker errors. For P14-P16, TPF
achieves similar tracking accuracy to [23], while for P9 and
P21 the three trackers are able to track the target throughout
the sequences.

E. Combining trackers

Performance comparisons are based on the overlap score
OG to measure the area overlap between the final target
estimate and the ground truth data.

Table V compares the six TPF configurations
(TPF3, ..., TPF8) showing that TPF3 is the best and
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Fig. 9. Comparison of Iref selected by the proposed approach and the
original approach based on fixed temporal windows ∆W = 5, 10, 20.

average tracking accuracy decreases with increasing number
of trackers. There are two main reasons for this accuracy
drop. First, low performing trackers in the on-target cluster
decrease the overall tracking accuracy when fused using the
average. This is indicated by results for P7, P9 and P15,
where all trackers are on-target for most of the sequence.
This can be further validated by a comparison of results with
AvgF (Table V) for these sequences. Second, the number of
splitting and merging of clusters naturally increases as we
include more trackers, thus increasing the chances of wrong
reverse-analysis evaluations. For P1, the target undergoes
occlusions between frames 75-95. FCT, L1T and LSST lose
the target due to occlusion, however FCT (a deterministic
tracker) achieves the best performance score during this
interval, reducing the overall accuracy. Results for TPF5

and TPF8 indicate this scenario. Similarly for P10, a drop
in accuracy of TPF5, TPF6 and TPF7 occurs when the
target undergoes occlusions between frames 20-35. All
trackers lose the target at frame 20. However, LOT and
AMS regain the target. The target remains stationary from
frame 45 till the end of the sequence. This scenario allows
failed trackers to achieve a higher performance score during
reverse-analysis, hence reducing the tracking accuracy. TPF
removes low-performing trackers to improve the overall
tracking accuracy. Results for P3, P10, P13, P18 and P19
indicate that TPF outperforms all trackers. Furthermore TPF
has similar performance to the best performing tracker(s)
for the other sequences except for P6, P12, P17 and P22.
TPF3 achieves an overall improvement of 23%, 15%, 8%,
23%, 21%, 27%, 13% and 17% in OG in comparison to
the individual trackers ST, AFT, LOT, IVT, FCT, AMS,
L1T and LSST respectively. Moreover, all other TPF
configurations (TPF4,...,TPF8) also achieve better results
as compared to all 8 trackers.

Fig. 10 compares tracker accuracy using OG values for
selected sequences. The target in P2 changes its pose,
causing AMS and L1T to lose the target between frames
80-90. Both failing trackers at this point are discarded by
TPF. Performance of FCT and LSST drops gradually after
frame 130 due to background clutter. The performance of
TPF7 drops at frame 140 where the output is corrupted
by low performing trackers (FCT and LSST), which are
incorrectly determined as on-target, while other TPF con-
figurations make use of the best performing trackers. For
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TABLE V
MEAN OVERLAP SCORE COMPARISON IN TERMS OF OG (TEN INDEPENDENT RUNS). KEY - ST: SPARSE TRACKER [42], AFT: ADAPTIVE

FRAGMENTS BASED TRACKER [43]; LOT: LOCALLY ORDERLESS TRACKER [44]; IVT: INCREMENTAL VISUAL TRACKER [45]; FCT: FAST
COMPRESSIVE TRACKER [47]; AMS: MEAN SHIFT TRACKER [46]; L1T: L1 TRACKER [48]; LSST: LEAST SOFT-THRESHOLD SQUARES

TRACKER [49]; AVGF: AVERAGE FUSION; SYMT: SYMBIOTIC TRACKER [17]; VTS: VISUAL TRACKER SAMPLER [13]; STR: STRUCK [50];
KCF: KERNELIZED CORRELATION FILTER TRACKER [3].

Fused trackers Proposed approaches Selected state-of-the-art
ST AFT LOT IVT FCT AMS L1T LSST TPF3 TPF4 TPF5 TPF6 TPF7 TPF8 AvgF SymT VTS STR KCF

P1 .65 .70 .64 .64 .14 .72 .20 .22 .72 .70 .53 .67 .67 .50 .25 .35 .24 .75 .21
P2 .80 .76 .79 .82 .58 .23 .82 .50 .81 .80 .78 .74 .74 .73 .40 .65 .77 .68 .87
P3 .40 .70 .73 .57 .40 .47 .79 .75 .70 .68 .74 .70 .82 .82 .78 .81 .77 .78 .85
P4 .35 .43 .25 .26 .41 .30 .23 .31 .41 .41 .41 .42 .42 .42 .30 .33 .37 .39 .64
P5 .81 .82 .31 .64 .39 .39 .38 .75 .76 .71 .51 .70 .47 .57 .64 .72 .59 .68 .85
P6 .12 .14 .10 .13 .10 .29 .31 .10 .13 .12 .12 .12 .13 .12 .12 .12 .14 .13 .10
P7 .91 .79 .78 .91 .81 .81 .92 .93 .85 .86 .81 .85 .85 .89 .89 .89 .85 .80 .83
P8 .63 .72 .78 .43 .04 .60 .55 .41 .77 .77 .71 .65 .63 .58 .47 .62 .78 .74 .67
P9 .75 .74 .89 .81 .74 .75 .89 .83 .77 .83 .81 .80 .81 .82 .84 .84 .92 .82 .74
P10 .11 .15 .74 .11 .44 .70 .12 .12 .77 .75 .55 .48 .37 .76 .12 .12 .14 .91 .11
P11 .75 .74 .91 .81 .75 .12 .90 .92 .86 .85 .83 .77 .80 .82 .69 .90 .84 .54 .76
P12 .36 .52 .25 .35 .63 .33 .25 .35 .55 .40 .39 .40 .37 .35 .30 .33 .36 .28 .27
P13 .60 .63 .42 .55 .67 .48 .51 .52 .71 .63 .70 .68 .61 .67 .53 .55 .56 .69 .44
P14 .87 .68 .79 .85 .78 .73 .78 .87 .86 .83 .82 .76 .82 .76 .82 .83 .85 .82 .82
P15 .74 .80 .78 .74 .77 .61 .90 .89 .81 .76 .79 .78 .81 .82 .82 .83 .78 .69 .79
P16 .78 .79 .74 .56 .78 .80 .71 .92 .74 .85 .83 .82 .82 .89 .70 .77 .86 .78 .79
P17 .26 .22 .65 .37 .20 .31 .53 .28 .26 .37 .31 .30 .40 .36 .43 .41 .24 .16 .84
P18 .42 .33 .87 .10 .85 .79 .69 .86 .86 .89 .87 .81 .80 .85 .28 .38 .87 .84 .12
P19 .86 .81 .77 .87 .87 .56 .78 .86 .89 .87 .87 .90 .89 .89 .87 .88 .80 .76 .89
P20 .90 .79 .85 .89 .89 .58 .84 .79 .88 .85 .86 .85 .86 .85 .83 .85 .87 .78 .90
P21 .75 .73 .84 .67 .73 .78 .83 .83 .77 .79 .77 .73 .84 .74 .78 .79 .85 .75 .74
P22 .52 .42 .36 .52 .68 .80 .81 .13 .43 .54 .50 .51 .52 .50 .43 .54 .37 .13 .13

Mean .57 .61 .65 .57 .58 .55 .62 .60 .70 .69 .66 .66 .66 .67 .56 .61 .62 .63 .61
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Fig. 10. OG scores for trackers and TPF configurations under analysis for selected sequences. (a) Students-P2, (b) CAVIAR-P4, (c) MITTraffic-P21.
Top row: Trackers; —: ST; - - -: AFT; —: LOT; - - -: IVT; —: AMS; - - -: FCT; —: L1T; —: LSST. Bottom row: TPF configurations; —: TPF3; - -
-: TPF4; —: TPF5; - - -: TPF6; —: TPF7; - - -: TPF8.

P4, all trackers lose the target between frames 60-110. All
TPF configurations identify and achieve accuracy close to
the best performing tracker (AFT). However TPF fails when
all trackers are off-target. P21 undergoes scale changes as it
moves away from the camera. OG for all TPF configurations
drops after frame 80, since all trackers remain on-target
and form a single cluster. After frame 130, OG for ST
and IVT drops significantly since they cannot handle scale
changes. However these trackers are discarded by TPF, while
the performance for TPF7 further improves as a better
performing tracker (L1T) is added in the framework.

F. Comparison with the state-of-the-art (SOA) approaches

Table V compares the TPF configurations and the related
SOA. AvgF and SymT have been tested using the eight
trackers. STRUCK is the best for P1 and P10, achieving the
best average results among the selected SOA approaches.
KCF achieves the best results for P2, P3, P4, P5, P17
and P20. However, it is unable to handle occlusions as
shown for P10, P12 and P22. SymT fails to determine a
low performing tracker, hence reducing the overall tracking
accuracy. It achieves good performance when most of the
trackers are accurate as indicated by results for P7 and P15.
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#10 #10

#60 #40

#112
#

#110

#230 #145

Fig. 11. Sample tracking results for Students-P1 (left column) and PETS-
P10 (right column). - - -: TPF; - - -: STRUCK; —: VTS; - - -: SymT; —:
AvgF; —: KCF.

TPF on the other hand is able to use the best performing
trackers and the overall accuracy is not dependent on the
percentage of good trackers. VTS performs relatively well
and shows the best results for P8, P9 and P21. However, it
fails for P1 and P10 due to occlusions, and for P17 and P22
due to similarly coloured background. Although the state-
of-the-art approaches outperform some employed trackers
(ST, IVT, FCT and AMS, see Table V), TPF3 shows an
overall improvement of 23%, 15%, 13%, 11% and 15% in
OG in comparison to AvgF, SymT, VTS, STRUCK and KCF,
respectively.

Sample tracking results for some sequences are shown
in Fig. 11 and Fig. 12 where it can be seen that TPF
correctly discards wrong trackers as they start to fail due to
tracking challenges. For clarity we only present comparisons
between TPF3 and the SOA. Examples in Fig. 11 show that
all trackers correctly follow the target at the beginning of
the sequence. As target occlusions are more frequent, only
STRUCK is able to perform similarly to TPF3 as seen in
frame 230 for P1 and frame 145 for P10. The right column
of Fig. 12 depicts the situation where only TPF3 is able
to adapt to changes in target scale and occlusions whereas
all the compared trackers fail, as seen in frame 85. The left
column of Fig. 12 shows an example where none of trackers
obtain accurate position estimations after an illumination
change (frames 117 and 192) and the best trackers (KCF,
STRUCK and TPF3) achieve low accuracy.

#4 #10

#63 #30

#117 #60

#192 #85

Fig. 12. Sample tracking results for CAVIAR-P4 (left column) and PETS-
P12 (right column). - - -: TPF; - - -: STRUCK; —: VTS; - - -: SymT; —:
AvgF; —: KCF.
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Fig. 13. Average computational time for the stages of the proposed ap-
proach. For each configuration, the average is computed over the complete
dataset and the total number of trackers.

G. Computational Cost

Fig. 13 presents the cost for the trackers, tracker clus-
tering (Section IV) and on-target cluster identification (Sec-
tion V) in terms of average computational time. The cost
of the fusion stage is negligible and therefore ignored.
The cost of the trackers considers running in parallel the
trackers to fuse and depends on the employed approaches,
being heavily influenced by the slowest tracker (LOT).
The computational time for tracker clustering slightly in-
creases with the number of trackers. Since on-target cluster
identification uses reverse-analysis, the computational time
becomes dependent on the trackers in the on-target cluster
C∗t and the tracking challenges present in the sequence.
This trend is also highlighted by the overall cost for the
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TABLE VI
COMPUTATIONAL COST OF THE TRACKERS AND THE PROPOSED APPROACH (TPF) MEASURED AS FRAMES PER SECOND (FPS). KEY - ST: SPARSE
TRACKER, AFT: ADAPTIVE FRAGMENTS BASED TRACKER; LOT: LOCALLY ORDERLESS TRACKER; IVT: INCREMENTAL VISUAL TRACKER; FCT:

FAST COMPRESSIVE TRACKER; AMS: MEAN SHIFT TRACKER; L1T: L1 TRACKER; LSST: LEAST SOFT-THRESHOLD SQUARES TRACKER.

Fused Trackers Proposed approaches
ST [42] AFT [43] LOT [44] IVT [45] FCT [47] AMS [46] L1T [48] LSST [49] TPF3 TPF4 TPF5 TPF6 TPF7 TPF8

FPS 50.1±0.1 5.9±4.0 0.3±0.1 48.1±1.4 8.0±6.2 108.0±31.2 7.7±1.7 3.4±0.6 2.5±4.8 0.3±0.4 0.2±0.3 0.2±0.1 0.1±0.1 0.1±0.1

Sequences
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Fig. 14. Percentage of trackers used by the proposed approach for different
tracker combinations.

TPF configurations presented in Table VI, where TPF3

achieves the best computational cost. Fig. 14 shows the
average number of trackers used by TPF, highlighting its
advantage to cluster trackers, and using only the ones on-
target for the various TPF combinations.

VII. CONCLUSIONS

We presented an approach to dynamically select and
combine the results of successful (i.e. on-target) trackers in
a decision-level fusion framework. The proposed approach
determines relationships between trackers by analyzing the
position and direction of movement of their estimated states.
These spatio-temporal features are combined to estimate
pair-wise tracker correlation scores that determine clusters
of similarly performing trackers over time. An adaptive
online evaluator identifies the trackers that are on-target and
propagates them over time until a split or merge of this
group (cluster) of trackers is detected. The final target state
is estimated by fusing the outputs from the trackers that are
in the on-target cluster. Experimental results show that the
proposed approach outperforms state-of-the-art methods and
the combined trackers. Moreover, the proposed time-reversed
evaluation improves the original approach by using motion
analysis and tracker performance to temporally update the
reference frame.

As future work, we will include the performance weight
of each tracker in the fusion stage.
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