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Support Vector Motion Clustering

Isah A. Lawal, Fabio Poiesi, Davide Anguita and Andrea Cavallaro

Abstract—We present a closed-loop unsupervised clustering
method for motion vectors extracted from highly dynamic video
scenes. Motion vectors are assigned to non-convex homogeneous
clusters characterizing direction, size and shape of regions with
multiple independent activities. The proposed method is based on
Support Vector Clustering (SVC). Cluster labels are propagated
over time via incremental learning. The proposed method uses a
kernel function that maps the input motion vectors into a high-
dimensional space to produce non-convex clusters. We improve
the mapping effectiveness by quantifying feature similarities via
a blend of position and orientation affinities. We use the Quasi-
conformal Kernel Transformation to boost the discrimination of
outliers. The temporal propagation of the clusters’ identities is
achieved via incremental learning based on the concept of feature
obsolescence to deal with appearing and disappearing features.
Moreover, we design an on-line clustering performance prediction
algorithm used as a feedback (closed-loop) that refines the cluster
model at each frame in an unsupervised manner. We evaluate the
proposed method on synthetic datasets and real-world crowded
videos, and show that our solution outperforms state-of-the-art
approaches.

Index Terms—Unsupervised motion clustering, Quasiconfor-
mal Kernel Transformation, on-line clustering performance eval-
uation, crowd analysis.

I. INTRODUCTION

Clustering motion vectors into groups with homogeneous
spatial and directional properties [1]-[4] can promote anomaly
detection in crowd activities [5] and identify the formation of
congested areas [6]. The knowledge of crowd motion direction
can also help multi-object tracking [7], walking route predic-
tion [8] and pedestrian re-identification across cameras [9].

Crowd motion can be structured [6] or unstructured [4].
The former involves high-density crowds whose flow can be
modeled as a liquid in a pipe and predicted by observing
an instance of the video scene [6]. Structured crowds can be
regarded as a convex problem' as the motion of individuals
is constrained by the main crowd flow. Unstructured crowds
are characterized by a lower density and interwoven motion
vectors with individuals whose paths are more challenging to
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A cluster is convex in the input space (i.e. Euclidean space) if, for every
pair of feature vectors within a cluster, every feature vector on the straight
line segment that joins them is also within the cluster boundary [10].

predict [4]. These tend to be highly non-convex as sub-groups
of individuals can freely move in the space.

Clustering can be performed by fitting Gaussian Mixture
Models to motion vectors directly [11] or by mapping mo-
tion vectors to tailored subspaces [3]. Clusters of coherently
moving people can also be isolated in a crowd [4], [12]
by temporally correlating tracklets, generated for example as
Kanade-Lucas-Tomasi short tracks [13], so as to automatically
highlight groups moving together. However, this approach
may omit smaller groups with weak coherent motions. Crowd
motion can also be characterized in terms of coherent or
intersecting motion via Deep Networks [14]. Moreover, this
method requires supervision and does not spatially localize
activities. Deep Networks could also be used to infer clusters
of features in an unsupervised manner as a dimensionality
reduction problem (auto-encoders) [15].

In this paper we propose a solution to the non-convex
crowd motion clustering problem in the input space. We
first map features in a high-dimensional kernel space (feature
space) and then solve the non-convex clustering problem.
Because motion vectors may not be linearly separable or
homogeneously distinguishable in the input space, we use
Support Vector Clustering (SVC) [16] that can map feature
vectors to a higher dimensional kernel space using a kernel
function in order to facilitate separability [17]. SVC does not
require initialization, or prior knowledge of the number and the
shape of the clusters. The sparse representation of the clusters
produced by SVC in the form of Support Vectors allows us to
employ incremental learning in order to perform the temporal
update of the cluster model. Because we are dealing with tem-
porally evolving motion vectors (data streams), our framework
accounts for the intrinsic temporal dependences of the data
to improve clustering. Our method is therefore applicable to
both structured and unstructured crowds. To avoid the cluster
model drifting we consider the concept of feature obsolescence
during the model update. Noisy and interwoven motion vectors
are deleted via the use of the Quasiconformal Kernel Transfor-
mation [18] that we embed in SVC to boost the discrimination
of outliers by moving samples close to each other in the
high-dimensional feature space. Moreover, we introduce a
novel closed-loop on-line performance evaluation measure to
quantify the homogeneity of the feature vectors in the clusters
at each frame. The resulting similarity score is used as a
feedback to the clustering algorithm to iteratively refine the
clusters in an unsupervised manner. We evaluate the proposed
method on different real-world crowd videos and compare its
performance with state-of-the-art clustering methods. Project
webpage: http://www.eecs.qmul.ac.uk/~andrea/svmc.html.

The paper is organized as follows. In Sec. II we survey
state-of-the-art clustering methods along with clustering per-
formance evaluation measures. We describe how the motion
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cluster boundaries are computed and the incremental learning
model in Sec. III and Sec. IV, respectively. In Sec. V we
discuss the difference among our method and state-of-the-art
alternatives. In Sec. V-A we analyze the computational com-
plexity and in Sec. VI we evaluate the clustering performance
of the proposed method. In Sec. VII we draw the conclusions
and future research directions.

II. STATE OF THE ART

In this section we discuss state-of-the-art feature clustering
methods and performance evaluation measures that quantify
the accuracy of clustering results.

A. Feature clustering methods

Feature clustering can be achieved using Watershed Cluster-
ing (WC) [19], Hierarchical Agglomerative Clustering (HAC)
[20], Graph-based Normalized Cut (N-CUT) [21], Affinity
Propagation (K-AP) [22], K-Means (KM) [23], Mean-Shift
(MS) [24] or Dirichlet Process Mixture Model (DPMM) [25].

Watershed Clustering (WC) uses a grid over the input
features to calculate a density function based on the distance
among the features [19]. Cells with high feature similarity
are selected as clusters. WC is sensitive to the selection of
the cell size and its inaccurate selection could lead to an
overestimation of the size and number of clusters.

Hierarchical Agglomerative Clustering (HAC) initially as-
sumes each feature to be a single cluster and then iteratively
merges clusters pairs based on their similarity [20]. HAC
requires a user to specify the stopping criterion and the intra-
cluster similarity for cluster merging. Moreover, HAC cannot
generate motion clusters of arbitrary shapes that are key for
the problem of motion clustering [26].

Graph-based Normalized Cut (N-CUT) models the set of
input features as a graph, where nodes represent features
and edges represent the similarity between features [21].
The graph is iteratively partitioned into clusters. Similarly to
HAC, N-CUT requires a stopping criterion to be provided at
initialization, thus reducing its applicability in cases of feature
streams (e.g. feature vector clustering of videos).

Affinity Propagation (K-AP) computes a pair-wise similarity
between input features and generates the clusters as the K
most similar groups. As for N-CUT and HAC, the number of
expected clusters needs to be defined a priori.

K-Means (KM) randomly initializes K input features as
cluster centroids and then computes the distance among fea-
tures and centroids [27]. Features are assigned to the clusters
with the closest centroid. Once all features are assigned to
clusters, the centroids of the clusters are recalculated. This
procedure is repeated until all cluster centroids stop varying.
KM requires the number of clusters to be specified in advance
and assumes that clusters are convex in the input space.

Mean-Shift (MS) can automatically determine the number
of motion clusters and does not use any constraints on their
shape. MS performs clustering by computing the mean of the
features lying within the same kernel. The kernel is iteratively
shifted to the computed mean and the process is repeated until
convergence. The selection of the kernel size is needed, and

TABLE I
COMPARISON OF THE MAIN PROPERTIES OF MOTION VECTOR
CLUSTERING METHODS.

WC | HAC | K-M | N-CUT | K-AP | MS | CF | SVC
[191] [20] | [23] | [21] | [22] |[24]]|[4]] [16]
Unsupervised v v v
Online performance
evaluation
Unknown number of

RS v v
clusters at initialization
Robustness to outliers v
Can produce arbitrarily v
shaped clusters
Tterative cluster refinement v v v

Properties Ours

AIENIENEEN
AIENIENEEN
EIENIENAENN IEN

its inaccurate selection could lead to over- or under-estimating
the number of clusters.

Dirichlet Process Mixture Model (DPMM) assumes that
the input features are generated from a Mixture of Gaussians
and clusters are represented by the set of parameters of the
mixture [25]. DPMM is limited by the assumption of Gaussian
clusters’ kernels, thus not allowing non-convex shapes nor
input features with elements lying in different spaces.

SVC [16] performs clustering by using a non-linear kernel
function to map feature vectors from input space into a high-
dimensional feature space and then constructs a hypersphere
enclosing the mapped feature vectors. This hypersphere, when
mapped back to the input space, separates into several cluster
boundaries defined by those data points known as the Support
Vectors (SVs), each enclosing a different cluster. SVC does
not require to specify the number of clusters in advance as
it can infer this number during the optimization. However,
an appropriate kernel and regularization parameters need to
be selected for clustering. SVC builds the cluster model
using batches of feature vectors and does not have an update
mechanism that allows the temporal adaptation of such a
model.

Table II-A compares the properties of state-of-the-art clus-
tering methods with those of our proposed approach.

B. Performance evaluation measures

The performance evaluation of clustering results is com-
monly carried out using Normalized Mutual Information [28],
Rand Index [29] or Dunn Index [30].

The Normalized Mutual Information (NMI) quantifies the
extent of predicted cluster labels (PCL) with respect to the de-
sired cluster labels (DCL) (i.e. ground truth). NMI is computed
as the mutual information between PCL and DCL, normalized
by the sum of the respective entropies.

The Rand Index (RI) measures how accurately a cluster is
generated by computing the percentage of correctly labeled
features. The accuracy score is given by the sum of true
positive and true negative PCLs (normalized by the sum of
all true and false PCLs) averaged over the whole PCL set.
True positives are the number of correct PCLs with respect
to a ground truth, whereas true negatives are the number of
features correctly classified as outliers. The value of NMI and
RI scores lies in the interval [0, 1]. The larger the NMI or RI
score, the better the clustering. However, to quantify clustering
performance on-line it is not possible to use ground-truth based
evaluation measures such as NMI or RI.
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Fig. 1. Block diagram of the proposed approach (SMVC - Support Vector
Motion Clustering). We first estimate the cluster boundaries and then use a
Quasiconformal Kernel Transformation along with the on-line performance
evaluation to refine the cluster boundaries. Then, we label each cluster and
assign these labels to the respective feature vectors. M defines the cluster
model at a generic time ¢, Ut is the set of clusters and S? is the Dissimilarity
score that quantifies the clustering performance.

The Dunn Index (DI) quantifies clustering performance
without ground-truth information. DI evaluates whether fea-
tures are compactly included in clusters and clusters are
clearly separated by computing the ratio between the max-
imum (Euclidean) distance between features belonging to
the same clusters (cluster compactness) and the minimum
(Euclidean) distance between features belonging to different
clusters (cluster separation). The value of DI is not defined
within a fixed interval. The lower the DI value, the better the
clustering performance. However, we will need a performance
measure that is unconstrained by the shapes of the clusters
in order to quantify clustering performance on-line. For this
reason, we will design a new evaluation measure, which does
not need ground-truth information and can cope with sparse
features and clusters with irregular shapes.

III. MOTION CLUSTER BOUNDARIES
A. Overview

Let F* = {ax!,..., 2%} be a set of motion vectors
(feature vectors) extracted from a video stream at frame t,
with ¢ € RY, i = 1,..., Nt, where z! = [z!,y!, 3!, 9] is
characterized by its 2D position [z!,y'] and velocity [2!,9¢].
N* is the cardinality of F"* and d = 4 is the dimension of z!.

Our objective is to learn a cluster model M? that defines
a set of distinctive clusters of F' at each t without prior
information on the shape and number of clusters.

We use Support Vector Clustering (SVC) to generate the
initial (¢ = 1) set of clusters W' of F'' belonging to M.
We then temporally update M? for ¢ > 1 via incremental
learning by taking into account the obsolescence of features:
old features are deleted and newer ones are used to update
M'*. We use a Dissimilarity score S! to evaluate the clustering
performance and refine the model M? for each t. Fig. 1 shows
the block diagram of our proposed approach.

B. Support Vectors

Feature vectors are generally distributed in a way that their
intrinsic similarities cannot be easily quantified in the input
space as they are non-linearly separable [31]. For this reason,

we use a non-linear transformation ¢(-) to map each feature
x! € F' to a high-dimensional non-linear feature space where
the feature vectors and Support Vectors are separable. The
mapping ¢(x!) need not to be computed explicitly as we
can implicitly quantify the feature similarity in the feature
space (via the so-called kernel trick). Such a feature similarity
allows us to determine the Support Vectors by generating a
hypersphere with center ¢! and radius R! that encloses feature
vectors of the same clusters in the feature space. The Support
Vectors are features that define the boundaries of each cluster
and can then be mapped back to the input space to form the
set of clusters’ boundaries

The hypersphere is determined via the following minimiza-
tion problem [32]:

Nt
M = arg min { (R")? + Z wiet
R'ﬁff;Ct i=1
subject to || p(x!) — &[|* < (RN +¢, i=1,...,N,
(1)

where M contains the arguments R, £! and ¢ that minimize
the function and ¢ : R* — H is a non-linear function that maps
wf € R* to the feature space H, where the dimensionality of
H is infinite for the case of a Gaussian kernel. &! are slack
variables that allow spurious :c;5 (outliers) to lie outside the
hypersphere and W/} are weights that regulate the number of
outliers [32].

Because ¢(x!) has infinite dimension, Eq. 1 cannot be
solved directly. A solution is to transform Eq. 1 into its Wolfe
dual form [33]:

Nf, Nﬁ Nﬁ
W =argmax Y BiK(xl,al)—Y Y BiBiK(xl,xh)
Bi i=1 i=1 j=1

)

Nt
subject to Z/Bi =1, 0<B<W, i=1,...,Nt
i=1
where W is the set of 3;Vi = 1,..., N that satisfy the max-
imization, which can be solved via Sequential Minimization
Optimization (SMO) [34].
K (-) is the kernel function that computes the inner product
between ¢(x;) and ¢(x;) as
K(x},2) = (g(@}) - p(a})) = e @2 (3)

J K3

where d(-) is a function that computes the similarity between
components (pair-wise similarity) of the feature vectors and
q" is a time-dependent coarseness parameter. ¢’ controls the
extent of the cluster boundaries (cluster size) and (implicitly)
the number of generated clusters [16]. This parameter is
usually manually chosen and the automatic selection of ¢* is
still an open question [35]-[38].

C. PFair-wise similarity

In Eq. 3 d(-) measures the pair-wise similarity among
feature vector elements. In the traditional SVC, d(-) is the
Euclidean distance D.(-) [16], but this is not suitable to
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measure angular distances as in our case. For this reason, we
include the Cosine distance into the SVC kernel function to
measure the orientation similarity [39] and we propose to use
it along with the Euclidean distance, which is applied to the
spatial coordinates.

The Euclidean distance is normalized as

De([at,yl], [, yl]) = — L))t @

where A is the diagonal length of the video frame.
The Cosine distance is computed as

N || l?yl

1 (&5, 9i] - [25, 93]
D([xﬁ,yf], [xt7yt]) =-(1- . : 5 .] j . (5)
‘ T2 &, gl 125, 2] |

We combine these two normalized measures as

1
d(a, ) = 5 (De ([, yils [, yi]) + D&, i), [, 951))
(6)

where d(x}, z") € [0,1].

D. Closed-loop update of the coarseness parameter

To enable unsupervised clustering, we design a method to
automatically estimate the value of ¢' at each ¢. ¢* is used to
determine the structure of the hypersphere that contains the
feature vectors mapped in the feature space. This is achieved
with a closed-loop solution that quantifies the similarity of
feature vectors belonging to a cluster. Such a similarity is
fed back to the clustering algorithm to determine (online) the
performance for a certain g°.

Authors in [40], [41] show that the relationship between
q* and the number of clusters induced when the hypersphere
is mapped back to the input space is a piecewise constant
function [42]. That is, for any arbitrary feature vector set,
there exist some interval of ¢’ for which the values of the
hypersphere are stable [41], thus leading SVC to produce the
same number of clusters but with a slightly different shape
boundary and size. Based on this notion we automatically
select a suitable ¢! from a given set by exploiting these
piecewise constant intervals to choose the value of ¢* via a
measure that estimates the homogeneity of a cluster.

We first compute the set of possible values of ¢* as

1 1
max; j d(x}, %)’ min; j ., d(zf, x5)

)

(7
where ¢’ . produces a single large cluster enclosing all feature
vectors [16] and ¢* = ¢!, .. leads to a number of clusters equal
to the number of feature vectors. Figure 2 shows an example
where the clustering is performed with ¢ = ¢!, and with
larger values of ¢?, which increase the number of clusters.

The best value of ¢' can be determined by iteratively
analyzing the clustering performance. In particular, because
feature vectors are unlabeled, we design a measure to perform
an unsupervised self-assessment of the clustering performance
namely Dissimilarity Score S? that quantifies the homogeneity
of the feature vectors belonging to each specific cluster.

t t _
[qmin ’ qmaa:] -

X Feature Vector

Fig. 2. Example showing three different clustering steps with (a) ¢ = @min =
0.2, (b) ¢ = 10 and (c) ¢ = 25. Only one cluster is generated when ¢ = gmin
and the number of clusters increases when the value of g increases.

E. Dissimilarity score

St is computed as similarity of feature vectors at neighbor-
hood level and then extended to cluster level. Specifically, the
inner orientation coherency s!, of each cluster hf, € U (the
set of all clusters) is quantified using the circular variance of
local feature vector orientations [39].

The Dissimilarity Score S' is then calculated as the
weighted average of s{, among all the clusters:

5t T ‘t [
ol
The feedback loop involves an initial generation of mean-
ingful candidate values for ¢' € [q!,;.,,qh.q.] achieved via
Kernel Width Sequence Generator (KWSG) [37]. Let qfn, with
m =1,...,Q!, be the set of candidate values for ¢*. Then, for
each ¢%,, SVC generates the candidate clusters U! along with
their S¢,. The final value of ¢' is automatically selected within
the interval where the computed number of clusters remains
relatively stable (Fig. 3 - red ellipse) and the Dissimilarity
Score 8!, has minimum value within this interval. Fig. 4
shows the block diagram for the automatic generation of the
coarseness parameter.

®)

F. Refined Support Vectors

The solution of Eq. 2 provides the values of the Lagrangian
multipliers (3; associated to each x!, which are used to classify
feature vectors as either Support Vectors or Bounded Support
Vectors. Specifically, the x! for which 0 < 3; < W} is a
Support Vector SL; ¢(xt) lies on the surface of a hypersphere
and describes the clusters’ boundaries in the input space. The
x! for which 8; = W/, is a Bounded Support Vector (B!);

70
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Fig. 3. Dissimilarity Score and number of clusters as a function of g*. The
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clusters. Within this interval we select the value of g* corresponding to the
smallest Dissimilarity Score.
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Fig. 4. Iterative process for the automatic generation of the coarseness
parameter g using the input features F'*. SVMC: Support Vector Motion
Clustering.

it is considered as an outlier because ¢(x!) lies outside the
surface of the hypersphere.

Feature vectors that lie on the clusters’ boundaries may have
been either assigned to a wrong cluster or wrongly classified as
inliers. Note that the similarity among feature vectors in the
high-dimensional space (feature space) is quantified via the
kernel function K (!, :cz) (Eq. 3). To obtain a more accurate
set of 3; values (Eq. 2) we employ the Quasiconformal Kernel
Transformation [18] to modify K (], ). This transformation
is typically used in a Support Vector Machine [18] and Nearest
Neighbor Classification [43] to make local neighborhoods in
a high-dimensional space more compact. The Quasiconformal
Kernel Transformation promotes the deletion of outliers as it
creates a new kernel K (x!,z!) from K (x!, ) by means of
a kernel manipulation involving the Quasiconformal function
Q). K(x, ) can produce a hypersphere with an increased
resolution that favors a higher discrimination between Support
Vectors and Bounded Support Vectors (outliers). The con-
struction of Q(-) is chosen such that the similarity between
each pair of features (i.e. ¢(x}) and ¢(x})) is weighted by
an exponential function that gives a greater penalization to
features that are distant from each other.

We define a positive real-value function Q(z!) for each @!
€ F' [43]. We use Q(z}) to scale K(x},z!) to f((acﬁ,:c;),
which in turn is used to solve Eq. 2 to obtain a new set of [3;
and to re-estimate the Support Vectors.

K(-) is defined as

with
|Sf’| t |12 /-2
Q(wg)zze—llami)—ﬂwk)ﬂ /T vah e ST, (10)
k=1

where the free parameter 7 is calculated as

1 :
=23 llot@h) - s@b)|*) VLkesi£k
=1
(1)

z is the number of nearest Support Vectors to @}, in S..
The new set of Support Vectors that defines the clusters’
boundaries is

¢t = {aliR(e) = max (R

ztesSt

12)

where R(-) is the distance of each feature vector from the
center of the hypersphere defined as

N

Nt Nt Nt
R(@i) = | 1-2> BiK(@f, @)+ Y > BiBK(xi, =)
i=1 i=1 j=1

13)

The generation of new Support Vectors (defining the clus-
ters’ boundaries) allows us to define the cluster affiliation of
each feature vector. Therefore, we label the clusters and assign
each z! € F" to its affiliated cluster using the Complete Graph
(CG) labeling method [16]. In CG a pair of feature vectors
x} and x! is said to belong to the same cluster (connected
components) if the line segment (inside the feature space)
that connects them lies inside the hypersphere. A number
of feature vectors (usually 10 [16]) are sampled on the line
segment to assess the connectivity. We use 10 sampled feature
vectors as this number provides cluster labelling results with a
negligible error along with a limited computational complexity
[16]. A higher accuracy can be achieved with a larger number
of sampled feature vectors, but with the disadvantage of a
multiplicative increase in the computation time [44].

Therefore, we construct an adjacency matrix A! =
[AL JN'N" where A, = 1 if a} and @’ are connected
components. Each Af ; is defined as

‘ 1

ij 0

if Rz} + Mzf — %)) < R, VA €[0,1]
otherwise,

(14
where ) is a free parameter used to account for the number of
sampled feature vectors along a line segment. As in [16], we
use A = 0.1 to allow 10 feature vectors to be sampled. As A® is
a graph of connected components, we label each independent
sub-graph and assign the resulting labels to the appropriate
feature vectors to define their affiliation.

We denote each cluster at ¢ as hﬁ, the set of all clusters as
Ut and the set of indexes of the clusters in W' as Qf. The

cluster model M* produced at ¢ is then defined as
M= (9',0"). (15)

In the next section we discuss how this model is updated
over time.
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IV. CLUSTER MODEL UPDATE

A new set of feature vectors F'* is to be clustered for each
t > 1. We update M*~! to M? by using Support Vectors and
their cluster affiliation in previous frames. For each F! we
generate the Support Vectors, the Bounded Support Vectors
and the new feature vector set [t = St U B!, U F*.

Traditional incremental learning approaches ([25], [45],
[46]) address the problem of the cluster model update contain-
ing features “sampled” from the same source with an invariant
generative distribution. This means that at initialization the
clusters are not fully defined and the incremental learning step
updates the cluster model based on the new spawned features
(sampled from the same distribution).

However, in our case the distribution of features in the
input space is time variant: features vary, appear and disappear
anywhere in the state space because of the changing dynamics
of people moving. Thus some Support Vectors and Bounded
Support Vectors of previous frames may be obsolete and, if
used to update M1, they would lead to inaccurate clusters.

To address this problem, we monitor the life span of each
Support Vector, and update B! and S! as functions of previous
frames. Specifically, Bounded Support Vectors may become
part of (or leave) some clusters or generate new clusters
themselves due to spawning or disappearing motion vectors.
The Bounded Support Vectors within the temporal interval
[t — Tin, t] that failed to become Support Vectors or inliers
(after T,,;, frames) are considered persistent outliers and
eliminated. 7,,;, defines the deadline for which Bounded
Support Vectors are considered for in the incremental step.
The larger T,,in, the longer the temporal window in the past
outliers are considered in the incremental step.

Support Vectors may also change because the shape of
the clusters changes due to spawning or disappearing objects
in the crowd, or due to changes in the crowd structure. If
the Support Vectors are not updated or eliminated according
to the evolution of the motion vectors, they would lead
to under-estimated clusters. Therefore, we eliminate Support
Vectors that are unused for more than 7),,, frames (within
[t—Tmaz, t]). Similarly to Tpnin, Tinas defines the deadline for
which the Support Vectors are considered in the incremental
step. The larger T},4., the larger the clusters’ boundaries that
will encompass the motion vectors. In videos it can be equal
to the value of the frame rate (e.g. 25 frames).

The feature vectors within £ are then used to solve Eq. 2,
which provides the updated set of Support Vectors that defines
the clusters’ boundaries C:™! (Eq. 12) and the updated set of
Bounded Support Vectors that defines the outliers.

Cluster labels are then assigned to all ! € F"* by recom-
puting the adjacency matrix A’ and re-labeling the graphs
of the connected component (Eq. 14). Because during the
incremental learning of M*~! some old cluster boundaries
might have become enlarged, due to the inclusion of new
feature vectors x!, we propagate the same old clusters labels
to the new x!.

We introduce a temporal cluster affiliation check to examine
the connectivity of the feature vectors within a given cluster
based on the adjacency matrix A’ in order to propagate the

Algorithm 1 Cluster assignment

t: frame
W' set of clusters

ht: ct? cluster in Wt

Q%: set of clusters’ indexes
w?: index of cluster h!
A ad}‘acency matrix
th
te

az graph of connected components in A*

for all a’, do
for all z¢ do
% Unchanged cluster & Enlarged cluster
fxl €al A(x!™" €hl™t v Az!T") then
:cz — wz_l
end if
% New cluster
if z! € al A Fa’~" then
z! — Wl
end if
% Merged cluster
ifx! €al A :cf_l € hz,_l then
hz “— hi U h,i/
dmff — wh
end i
end for
end for

same cluster labels. The four cases are:
(i) Unchanged cluster. We check whether the graphs of the
connected components induced by A! are formed by the
feature vectors from old clusters. This operation is performed
by checking the ages of all the feature vectors within the
graphs and their corresponding cluster indexes assigned to the
previous frame. Then we maintain the same old cluster label
for the feature vectors (i.e. no new clusters are formed).
(ii) Enlarged cluster. We check whether some graphs of the
connected components of A? are formed by the feature vectors
from an old cluster, and the rest of the graphs are formed by
the feature vectors in F'*. We propagate the same older cluster
label to the newly included feature vectors.
(iii) New cluster. We check whether all the graphs of the
connected components of A? are formed by the feature vectors
in I'* only, and then assign a new cluster label to the feature
vectors.
(iv) Merged cluster. We check whether the connected compo-
nents of A! are formed by feature vectors from different old
clusters, and then we assign to all the feature vectors the label
of the old cluster with the largest number of feature vectors
before the merging.

This four-case cluster assignment is summarized in Algo-
rithm 1.

V. DISCUSSION
A. Computational complexity

We analyze the computational complexity per frame and
consider the two main components of the approach: the
estimation of the clusters’ boundaries over time and the cluster
assignment of the feature vectors.

Let F* = St U B! U F*, be the set of feature vectors at
frame ¢ for ¢ > 1, where S! B! and F* are the Support
Vectors, Bounded Support Vectors and newly obtained feature
vectors at t, respectively. At each ¢, the update of M*~!
to M involves solving Eq. 2 using the SMO solver [34]
with a complexity of O((|EF|)2) [47], followed by the cluster
labeling procedure for the updated set of Support Vectors



IEEE TRANSACTION ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. X, NO. X, XXXX 7

describing the clusters’ boundaries with a complexity of
O((|Ft| — |BL])2|SE|\), where S% and B! are the updated
Support Vector sets. \ is a free parameter. The computational
complexity per frame is O((|F*[)2\) V t. For a video with
a frame rate of 25fps, the computational burden is 25 times
more.

We additionally analyze the per-frame computation time
using three videos composed of 245, 500 and 900 frames,
respectively. These videos contain 142 + 20, 240 + 38 and
175 £ 23 feature vectors on average per frame, respectively.
SVMC is implemented in Matlab (the code is not optimized)
and the experiments are run on a PC with Core Intel i5
2.50GHz and 6GB memory. The computation time per frame
is 71.014£27.32s, 142.234+57.80s and 89.09+35.66s, respec-
tively. The computed time comprises the time spent to update
the cluster model M and the time used to perform the cluster
labelling over the entire feature set. The cluster labelling
accounts for the largest portion of the SVMC computation
time, which includes generating the adjacency matrix and
finding the connected components. The computation time of
the cluster labelling can be reduced by employing algorithms
such as SEP-Complete Graph (SEP-CG) [48], [49]. SEP-CG
performs the cluster labelling by first identifying a set of stable
equilibrium points (SEPs) that describe the cluster boundaries,
which consist of feature vectors located around the same local
minimum of the function (i.e. Eq. 14). Then the SEPs are
employed to infer the connected components [48] via the use
of additional feature vectors located on saddle-points [49]. The
computational complexity of SEP-CG is O(|F"|log| E'|) [48].

B. Comparison with respect to state of the art

We name the proposed approach as SVMC (Support Vector
Motion Clustering). The differences between SVC and SVMC
are: (i) SVC does not perform an unsupervised selection of the
kernel parameter. The kernel parameter controls the hyper-
sphere size and regulates the number of clusters formed; (ii)
SVC calculates the multi-dimensional feature vector similarity
by applying the same distance measure to all the feature
elements. This can lead to clustering errors in the case of
heterogeneous feature vector elements, as different elements
might have to be compared with different distance measures.
One case is motion clustering, where position and orientation
features should be compared with Euclidean and angular
distance, respectively; (iii) SVC does not have a mechanism
for the model update, thus it is not suitable for data-stream
clustering that require temporal the model update. SVC is
designed to re-build the cluster model from scratch every time
a new batch of feature vectors is to be computed. However,
temporal dependencies need to be considered as they promote
clustering accuracy; (iv) the concept of Quasiconformal Kernel
Transformation is used for the first time with SVC framework
to remove additional outliers, before it was used on Support
Vector Machine with supervised problems.

Compared to other state-of-the-art algorithms (Sec. II).
Unlike K-M, the number of the clusters need not to be defined
in SVMC as it is automatically determined. Unlike N-CUT,
K-AP and MS, SVMC is data-driven and unsupervised. Unlike

Fig. 5. A sample frame of the synthetic dataset with nine motion clusters
used to evaluate the proposed method. The image resolution of the dataset is
467x366.

DPMM, SVMC employs a distance measure that can deal with
heterogeneous feature elements. Finally, unlike CF and CT,
which require a strict spatial and temporal coherency of the
feature vectors, SVMC relaxes this assumption and can include
smaller clusters that still present coherent motion.

VI. EXPERIMENTAL RESULTS
A. Datasets and evaluation

We evaluate the proposed clustering framework (Fig. 1)
using a synthetic dataset and real-world crowd videos.

The synthetic dataset is generated with an extended version
of the code used in [4] and includes nine different motion
clusters for a total of 67500 feature vectors over 50 frames.
The modification includes random variations of the velocity
component, a larger number of feature vectors and additional
motion clusters with different shapes (interwoven circular
clusters). Each feature vector is characterized by position and
velocity. We use this dataset in order to test the ability of our
method in clustering homogenous motion flows with different
scales, shapes and dynamics (Fig. 5 shows an instance of
the synthetic dataset). We use 5 video sequences, namely
Marathon, Traffic, Train-station, Student003 and Cross-walk,
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which include variations of crowd density. These are popular
videos used for the evaluation of crowd motion segmentation
in previous studies [3], [4], [6]. Marathon includes athletes
running with coherent motion flow; the crowd density is high
and structured. Traffic includes vehicles moving along two
traffic lanes and some jaywalkers traversing these traffic lanes;
the crowd is unstructured. Train-Station consists of pedestrians
entering/exiting a train station; the crowd is unstructured.
Student003 involves a crowded student square where both
individual and groups of pedestrians move in an unstructured
manner. Cross-walk contains two large groups of pedestrians
crossing each other on the crosswalk; the crowd is initially
structured and then it changes to unstructured.

The clustering quality is evaluated using the proposed
Dissimilarity Score S* (Sec. III) and Normalized Mutual
Information (NMI) [28], using the ground truth of the synthetic
dataset for calculating NMI. We also compare the relative
evaluation performance of S* and NMI to understand whether
the Dissimilarity Score agrees with the NMI assessment. We
use the proposed Dissimilarity Score because our objective is
also to compare it against NMI that is a popular state-of-the-
art measure. NMI € [0,1], where NM I — 1 indicates a better
clustering performance. The Dissimilarity Score St € [0, 1],
where S' — 0 indicates homogeneous feature vectors within
clusters. The performance is evaluated over time to evaluate
the incremental capabilities of the method.

We also quantitatively evaluate the clustering results using
the method proposed in [2]: for each motion cluster in a video
frame we count the number of individuals in the cluster whose
motion direction does not differ more than 90 degrees from the
mean motion direction of the individuals in the same motion
cluster. The number obtained is considered as the number
of correctly clustered people in the video frame. Thus, we
compute the error rate of each method as the ratio of the
number of incorrectly clustered people to the total number of
people in a video frame [2].

B. Experimental setup and comparison

We use the Kanade-Lucas-Tomasi (KLT) tracker [13] to
extract feature vectors from each frame; KLT feature vectors
are characterized by a 2D position and velocity.

The choice of T},;, and T,,., is data and task dependent.
Our choice of these two parameters is based on the following
idea. T},;, can be chosen according to the dynamics of the
scene under consideration. We set 7,,;, = 2 in order to allow
feature vectors deemed to be Bounded Support Vectors at a
certain time ¢ to be re-considered as potential Support Vectors
at the next time ¢t + 1. A value of T,,;, > 2 would allow the
incremental update to reconsider Bounded Support Vectors as
Support Vectors for multiple time steps, but would lead to an
increasing memory requirement and computational resources.
T'naz determines the time duration for which Support Vectors
computed at a certain time step ¢ are maintained over time to
help the incremental update. We set T,,,,, = 25 as we assumed
that data do not largely change within 25 frames.

We compare our clustering results for the synthetic dataset
with traditional SVC and six other state-of-the-art cluster-
ing methods: Graph-based Normalized Cut (N-CUT) [21],
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Fig. 6. NMI and Dissimilarity Scores for different clustering methods. Dotted
lines: Incremental clustering methods. Continuous lines: Non-incremental
clustering methods. (a) NMI € [0,1], NMI — 1 indicates better clustering
performance. SVMC (red dotted line) has the smallest average NMI score
(0.8722) followed by IDPMM (green dotted line) with an average NMI score
of 0.8190. (b) Dissimilarity Score € [0,1], St — 0 indicates a better clustering
performance. SVMC (red dotted line) has the smallest average Dissimilarity
Score (0.0919), followed by IDPMM (green dotted line) with an average
Dissimilarity Score of 0.1323.

Affinity Propagation (K-AP) [22], Mean-Shift (MS) [24],
Coherent Filtering (CF) [4], Streaming Affinity Propagation
(StrAP) [50] and Incremental Dirichlet Process Mixture Model
(IDPMM) [45]. We choose these for comparison as they are
standard clustering methods [21], [22], [24], [45], [50] plus a
recent specific method for motion clustering [4]. We set the
kernel and regularization parameters of SVC to 2.5 and 1.0,
respectively. We set the initial number of clusters to nine (equal
to the number of clusters) for N-CUT and K-AP. StrAP, MS
and IDPMM automatically determine the number of clusters.
For CF we use the same parameters provided in [4].

We also compare motion clustering results against three
other state-of-the-art methods for crowd motion clustering:
Streak flows and watershed (Streakflow) [2], CF [4] and Col-
lective Transition prior (CT) [12]. For this we use Marathon,
Traffic-junction, Train-station and Student003. The same KLT
feature vectors used in SVMC are given as input to CF and CT,
while video frames are directly given as input to Streakflow as
in the original implementation that uses post-processed optical
flow is used instead of KLT feature vectors.

C. Evaluation on the synthetic dataset

Fig. 6 shows NMI and S* values for the compared state-
of-the-art methods and the proposed approach. Fig. 7 shows a
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(e) IDPMM

Fig. 7. Clustering results of the methods used for comparison on the synthetic
dataset. The color-coded features represent the affiliation to the clusters. The
SVMC is the only method that correctly estimates all the motion clusters.
The resolution of each image is 467 x366.

sample frame of these results. From Fig. 6 we can make two
observations.

The first observation is that SVMC outperforms the other
methods (i.e. highest NMI and lowest S* overall) followed
by IDPMM and CF. SVMC can effectively cluster features
and maintain the best results over time. The transformation
to a higher dimensional space allows SVMC to capture the
intrinsic similarities among feature vectors of the same flow
type although they appear interwoven to an observer (Fig. 7h).
IDPMM is the second-best method as it can accurately cluster
the circular patterns, but it is unable to separate the bi-
directional flow on the top-left (Fig. 7e) because the algorithm
cannot temporally propagate the similarity among features.
Also, because the similarity among features is low, several
feature vectors are deemed to be outliers. CF achieves the
third-best results as it can accurately cluster flows with evident
opposite directions (top-left Fig. 7g). Recall that CF produces
clusters based on motion vector similarities in the input

(b) IDPMM

Fig. 8. Comparison of the results of (a) SVMC and (b) IDPMM at frame 22
of the synthetic dataset. Some feature vectors of the two small circular flows
(top-right) are incorrectly assigned to different clusters by SVMC whereas
IDPMM correctly clusters them. The resolution of each image is 467 xX366.

space with an iterative process that begins from a single
motion vector. This design does not allow CF to determine
overlapping motion vectors that could share similar patterns
(motion vectors with the same direction localized in a certain
area). In fact, CF fails in the case of small overlapping circular
flows when the direction of some motion vectors coincides
with that of the overlapped flow. SVC, N-CUT, K-AP and MS
cannot effectively cluster the feature vectors as the direction
component of the feature vectors is erroneously compared by
the kernel of these methods. We can also observe that, unlike
traditional SVC, N-CUT, K-AP and MS which do not have an
online model updating mechanism, the incremental update of
SVMC demonstrates its effectiveness in tracking the evolution
of the clusters’ boundaries over time and in propagating the
same cluster identity to feature vectors belonging to the same
flow. At frame 22 (Fig. 6) the NMI score and the Dissimilarity
Score for SVMC show a drop in performance compared to
IPDMM. This is because SVMC produces some errors when
clustering the motion vectors of the circular flows during the
incremental update (Fig. 8a, top-right circular flows).

In the specific case of SVMC improvements with respect
to SVC, we can observe that SVMC can separate the two
spatially close but opposite flows of the dataset in Fig. 7h
(top-left flows - green and purple clusters) mainly because
of the modified kernel that uses the hybrid distance measure
that compares both the spatial and directional coordinate of
the feature vectors. Whereas SVC clustered the two opposite
flows as a single cluster (Fig. 7f top-left flow). Moreover,
SVMC outperforms SVC as it can correctly cluster the feature
vectors of the two circular flows into two clusters represented
by the red and blue feature vectors (Fig. 7h bottom flows),
because the incremental model update mechanism of SVMC
can capture the temporal similarities of the coherent flows and
can maintain the cluster identities associated to each feature
vector over time. The same concept applies to the two circular
flows interwoven with the straight flows on the top-right of
Fig. 7h. SVC cannot separate them, whereas SVMC can.

We analyze the execution time of the compared methods on
the synthetic dataset using the code provided by the authors.
MS, CF, N-CUT, StrAP, IDPMM and K-AP achieve an average
time of 0.08 0.03s, 0.234+0.05s, 0.28+0.14s, 1.124+0.23s,
6.54 = 0.77s and 139.00 £ 32.01s per frame, respectively.
SVC and SVMC are implemented by us with an un-optimized
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Matlab code that achieves an average of 652.15 4= 30.15s and
557.60 £ 65.78s per frame. The incremental update allows us
to save computation time as it does not need to re-compute
the cluster model each time step.

The second observation is that NMI and S agree on the
evaluation of the clustering performance. Note that S* does
not use annotated data for the analysis as opposed to NMI
that does. For example, SVMC has the highest NMI (Fig. 6a)
and the lowest S* in Fig. 6b. Similarly, traditional SVC, N-
CUT, K-AP, and MS which present low NMI, also have S?
comparably high. We can then infer that S can be used as a
valid predictor for the clustering performance. From the graph
we can also observe that the incremental learning does not drift
over time and maintains the best performance throughout.

Finally, we further validate SVMC by using the original
version of the synthetic dataset from CF [4] and compare
our results with that obtained with the CF method. SVMC
has NMI and S of 0.9820 and 0.0225, respectively, which
are yet better than those of CF that are 0.9667 and 0.0248,
respectively.

D. Comparison between SVMC vs. SVC on real crowd videos

Fig. 9 shows the Dissimilarity Score generated by SVMC
and SVC, where SVMC outperforms SVC (Fig. 9a-c) with
lower Dissimilarity Scores on all the videos. In Train-station
and Student003 the scenes are unstructured due to people
moving incoherently and crossing each other, thus SVC with-
out mechanism for evaluating the orientation of the different
motions and for cluster refinement, cannot separate them in
different clusters leading to a high Dissimilarity Score (red).

SVMC can instead cluster them with a lower Dissimilarity
Score (green) because of the hybrid distance measure that
discriminates motions with distinct directions and by means of
the Quasiconformal Kernel Transformation that can generate
more refined clusters than SVC. In the case of Cross-walk,
there are two distinct sets of pedestrians crossing with opposite
motion directions. The feature vectors generated from the
scene until the 150" frame can be easily clustered by SVC
as the two sets of people are spatially far apart. However,
when the two sets of people mix (i.e. from the 150" frame
onwards), the feature vectors become interwoven and thus
difficult to assign to different clusters (Fig. 11a). The qual-
ity of the clusters generated by SVC begins to degrade as
shown by the increasing Dissimilarity Score in Fig. 9¢ (red).
The Dissimilarity Score for the clusters produced by SVMC
remains instead low (thus indicating homogeneous clusters)
throughout the video (Fig. 9¢ (green)).

We also compare the performance of SVMC and SVC
using NMI and Dissimilarity Score on the same datasets using
manually annotated clusters. We annotated 10 key-frames
for each video, which contain sufficient variability of crowd
structures. Fig. 10 shows the results in terms of average and
standard deviation of the NMI and Dissimilarity Score on the
10 key-frames. Both NMI and Dissimilarity Scores show that
SVMC provides better and more stable performance than the
traditional SVC.
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Fig. 9. Comparison of the Dissimilarity Scores generated by SVMC and
SVC for (a) Train-station, (b) Student003 and (c) Cross-walk. SVMC (green)
produces clusters with feature vectors that are more coherent (i.e. lower
Dissimilarity Score) than SVC (red).
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Fig. 10. Comparison between SVMC and SVC using (a) NMI and (b)
Dissimilarity Score (S*) on Cross-walk, Train-station and Student003. The
results are obtained as average and standard deviation of the NMI and
Dissimilarity Score over 10 key-frames (manually selected and annotated).
Note that NMT — 1 and St — 0, signify better results. Results show that
SVMC produces better and more stable performance than the traditional SVC,
both with NMI and the Dissimilarity Score.

E. SVMC vs. other crowd motion clustering methods

Fig. 12 shows the quantitative comparison of the four
motion clustering methods for two videos (StudentO03 and
Train-station), where the people in the scene are manually
counted.

In Student003, SVMC outperforms Streakflow, CF and CT
in terms of the number of correctly clustered pedestrians with
an average error rate of 0.117 against the 0.164, 0.249 and
0.345 calculated for CF, Streakflow and CT, respectively. In
Train-station the average error rates are 0.069 for SVMC,
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Fig. 11. Sample clustering results on (a) a representative frame of Cross-walk for (b) SVC and (c) SVMC. The colored patches represent the motion clusters
of people with the same motion direction. At the 50" frame (top) both SVMC and SVC correctly cluster the two sets of people, at the 150t" frame (bottom)
the SVC incorrectly clusters the two sets of people as one large cluster (cyan patch). SVMC can correctly cluster the two groups of intersecting people

(i.e. cyan and dark red patches).
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Fig. 12. Comparison of motion clustering error rates on Student003 and Train-
station. SVMC outperformed CF, Streakflow and CT in terms of number of
correctly clustered people (i.e. lower error rate) for both videos.

0.098 for CF, 0.157 for Streakflow and 0.245 for CT. In
general, the average error rate and standard deviation of SVMC
are smaller than those of the other methods. This is mainly
due to the precision introduced by the Quasiconformal Ker-
nel Transformation with which SVMC can determine cluster
boundaries and update them over time. Note that the update
involves outlier deletion and computation of new Support
Vectors.

Fig. 13 shows sample qualitative results of the four methods.
Results of SVMC, CF and CT are visualized as follows. For
each clustered feature vector, we draw a colored circle on
its location, and the color is assigned based on the mean of
the orientations of the features inside the same cluster; this
allows us to highlight regions with people having the same
motion properties. Results for Streakflow are visualized as in
the original paper [2].

In Marathon, SVMC clusters the four motion clusters
formed by the runners (Fig. 13d), whereas CT detects only
three motion clusters in the scene as it considers runners on
the left-hand side and center having the same motion direction
(Fig. 13a). Streakflow and CF cluster the whole flow of people

as a single motion cluster without taking into consideration the
motion direction of the runners.

In both Traffic-junction cases, SVMC clusters the two main
motion clusters belonging to the two main lanes (dark red
and cyan) while also distinguishing objects traversing the
junction orthogonally to these lanes (yellow). Note that, the
other methods cannot detect these two objects.

In Train-station, SVMC generates clusters that can be used
to infer the main directions which people are heading in
and to identify people moving in different directions within
groups (dark red cluster on the left-hand side). We can observe
that flows of people following in different directions are
homogeneously clustered with SVMC, whereas with the other
methods some people within the same flow are divided into
sub-clusters (e.g. in the case of CT and CF where the flow on
the right-hand side is split into blue and cyan clusters).

In Student003 1 CF correctly clusters a group of people
with a dark red cluster on the left-hand side, whereas SVMC
considers the feature vectors in the area as outliers. In Stu-
dent003 2, SVMC separately clusters groups of people walking
close to each other (cyan and purple patches in the center
of the image) but moving in the opposite direction, whereas
Streakflow erroneously considers these people as having the
same motion direction (yellow patch in the center). CF and
CT generate motion clusters of a few groups of people while
discarding other people in the scene.

VII. CONCLUSION

We proposed a novel unsupervised method for clustering
motion vectors extracted from crowd scenes. This is achieved
via the introduction of an on-line clustering performance eval-
uation measure (Dissimilarity Score) that provides feedback
to SVC to tune the coarseness parameter in the kernel. A
further refinement of the cluster boundaries is performed via
the Quasiconformal Kernel Transformation from the Support
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Vector Machine framework. Temporal adaptation of the cluster
model is carried out with incremental learning that considers
the concept of obsolescence of feature vectors in order to keep
the model updated only to current scene dynamics.

We validated the performance of the proposed method on
an extended version of a state-of-the-art synthetic dataset
[4] and showed that our clustering performance outperforms
that of traditional clustering methods. Moreover, we applied
our method to real-world crowd videos and showed that it
effectively characterizes the flows of moving people.

In addition to the applications shown in this paper, our
method could be used for group detection and tracking in
crowd without explicitly tracking individuals [S1]. A limitation
of the proposed method is the computational cost due to
the need to solve a quadratic problem. Future research will
therefore include a reduction in the computational complexity
by using a second-order Sequential Minimization Optimization
[52] and by performing cluster labeling with a recent method
proposed in [53].
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