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Abstract

Multi-modal ego-centric data from inertial measurement
units (IMU) and first-person videos (FPV) can be effectively
fused to recognise proprioceptive activities. Existing IMU-
based approaches mostly employ cascades of handcrafted
triaxial motion features or deep frameworks trained on lim-
ited data. FPV approaches generally encode scene dynam-
ics with motion and pooled appearance features. In this pa-
per, we propose a multi-modal ego-centric proprioceptive
activity recognition that uses a convolutional neural net-
work (CNN) followed by a long short-term memory (LSTM)
network, transfer learning and a merit-based fusion of IMU
and/or FPV streams. The CNN encodes short-term tempo-
ral dynamics of the ego-motion and the LSTM exploits the
long-term temporal dependency among activities. The merit
of a stream is evaluated with a sparsity measure of its initial
classification output. We validate the proposed framework
on multiple visual and inertial datasets.

1. Introduction

First-person proprioceptive activity recognition classi-
fies the activities of a subject from ego-centric data and may
play a significant role in personalised assistive technolo-
gies [33]. Proprioceptive activities involve full- or upper-
body motion of the subject such as Run, Walk and Go up-
stairs [2]. Inertial measurement units (IMU) and wearable
cameras are common sensors used to collect ego-centric
data. An IMU itself may contain multiple sensors, such
as an accelerometer and a gyroscope. Current approaches
often apply feature-level fusion using concatenation [26],
and it is desirable to effectively integrate different feature
streams and/or modalities.

Motivated by the success of deep learning in computer
vision, convolutional neural networks (CNNs) have been

employed also with inertial data [24, 25] and recursive
neural networks (RNNs), such as long short-term mem-
ory (LSTM) networks, have been used with multi-modal
data as well [22]. However, deep frameworks for ac-
tivity recognition from time-series sensory data are often
built form scratch and trained with a limited amount of
data [22, 24, 25]. In addition, they do not effectively en-
code the intrinsic relationships among triaxial components
of the inertial data [24, 25]. Though IMU and first-person
vision (FPV) modalities are complementary [33], their deep
features have not been integrated yet.

In this paper, we present a deep framework for proprio-
ceptive activity recognition that uses inertial data and first-
person videos. We use cross-domain knowledge transfer
with a CNN-LSTM that exploits the discriminative charac-
teristics of multi-modal feature groups provided by stacked
spectrograms from the inertial data. Our solution enables
us (i) to use 2D convolutions rather than 3D convolutions;
(ii) to use existing image models as feature extractors; and
(iii) to encode the intrinsic relationships among motion
components. To reduce the complexity of the LSTM net-
work and hence the amount of data required for its train-
ing, we integrate information from different streams and/or
modalities using a logistic regression (LR) and a Hoyer-
based sparsity measure [13]. To the best of our knowl-
edge, this is the first work that integrates deep features
extracted from inertial and visual data for the recognition
of proprioceptive activities. The software of the proposed
framework is available at http://www.eecs.qmul.
ac.uk/˜andrea/fpv-imu.html.

The paper is organized as follows. Section 2 reviews re-
lated works that employ deep frameworks on inertial and
FPV data. Section 3 presents the proposed framework. Sec-
tion 4 describes the experimental results and the datasets
used for validation. Finally, conclusions are drawn in
Sec. 5.

http://www.eecs.qmul.ac.uk/~andrea/fpv-imu.html
http://www.eecs.qmul.ac.uk/~andrea/fpv-imu.html


2. Related work

In this section, we review CNNs that learn motion fea-
tures from FPV with 3D and 2D convolutions. We also dis-
cuss LSTM-based temporal dependency encoding as well as
CNN and LSTM networks for inertial-based activity recog-
nition.

Features that encode the temporal dynamics in a video
can be learned with a CNN that uses 3D convolutions [15,
23, 30] or 2D convolutions followed by temporal pool-
ing [10, 16, 18, 27, 28, 31, 32]. The 3D convolutions help
learning spatio-temporal [15, 30] or temporal [23] features
from a volume of data and result in a large number of net-
work parameters. 2D convolutions can instead be applied
on each frame and be followed by a pooling operation to
encode the temporal variation of each feature [16, 27, 32].

FPV-specific deep frameworks are mostly designed for
the recognition of object-interactive activities [20, 28] and
focus on learning local hand-motions and objects using
multi-stream networks. A compact CNN was proposed
in [23] to learn ego-centric motion features using a 3D con-
volution in the first layer followed by subsequent 2D convo-
lution layers, which suppress long-term temporal informa-
tion early in the network.

Rearranging optical flow data into RGB-like images en-
ables the use of 2D convolutions followed by temporal
pooling [18, 31, 32]. This solution reduces the amount of
data required for training as it facilitates transfer learning
from successful image models pre-trained on large image
datasets, e.g. ImageNet [7].

LSTM networks can encode temporal dependencies
among subsequent samples. When an LSTM is preceded
by a CNN, the overall network becomes both spatially and
temporally deep [9, 21, 32]. For this reason existing LSTM
networks therefore generally encode short-term dynamics
only (e.g. 0.64 seconds [9]).

Due to the success of deep networks in computer vi-
sion [8], convolutional and recursive networks have also
been used for time-series inertial data [11, 22, 24, 25]. How-
ever, deep features learned from inertial data do not out-
perform handcrafted (shallow) features yet [22, 25], partly
because of the lack of a large public dataset for training.

The sums of temporal convolutions on the concatenated
spectrograms of multiple axes and streams can be applied to
learn inertial features on low-power devices [24, 25]. While
this approach achieves invariance against changes in place-
ment, orientation and sampling rate of the inertial sensor;
cascading spectrograms limits the potential of learning use-
ful relationships among different motion components [22].
A CNN-LSTM framework can be used to learn features
from raw inertial data with the LSTM accounting for the
temporal dependency [22]. However, this approach results
in more complex network compared to [24, 25].

3. Proposed framework
Let C = {Ac}Cc=1 be a set of C activity classes. Let

In ∈ {Ia,n, Ig,n} be a windowed inertial sample of ac-
celerometer (Ia,n) or gyroscope (Ig,n) data; and Vn ∈
{Vg,n, Vc,n} be a global motion stream extracted from a
first-person video sample, Fn, using the average of grid
optical flow (Vg,n) or the movement of intensity centroid
(Vc,n). Let Sn ⊆ {In, Vn} be multi-modal ego-centric mo-
tion data whose duration is λ ∈ {λi, λv} seconds, where
λi and λv refer to the inertial and visual data, respectively.
We aim to classify each Sn into its activity class, Anc , by
encoding its short-term dynamics and long-term temporal
dependencies with the preceding T ∈ {Ti, Tv} samples:
Sn−1, Sn−2, · · · , Sn−T . Ti and Tv refer to the inertial and
visual data, respectively.

Similarly to [2], we extract short-term motion features
using a pre-trained CNN model from stacked spectrograms
of multiple motion components. Spectrograms for each
motion stream are computed and stacked as a 3-channel
motion representation. We employ a logistic classifier on
each stream and use a sparsity weighted combination of out-
puts from different streams. Finally, we employ an LSTM
framework to encode the long-term temporal dependency
among activities. An output wrapper transforms the hidden
output of the LSTM to an activity prediction vector. The
proposed solution is shown in Fig. 1 and detailed below.

3.1. Multi-stream global motion extraction

We extract from the first-person video sample Fn =
(fn,1, fn,2, · · · , fn,l, · · · fn,L), which contains L frames,
two streams of global motion features, namely the average
of the grid optical flow, Vg,n, and the movement of intensity
centroid, Vc,n.

Let On = (On,1, On,2, · · · , On,l, · · · , On,L−1) be the
optical flow computed between a subsequent pair of frames,
fn,l and fn,l+1, l ∈ [1, L − 1], with the Horn-Schunk
method [12], whose global smoothness assumption fits pro-
prioceptive activities where the ego-motion of the user is
dominant. Let On,l = {Oxn,l(i) + jOyn,l(i)}

γ2

i=1 represent
the set of complex optical flow vectors of frame l, where
γ is the number of grid cells in the horizontal, x, and ver-
tical, y, dimensions. The corresponding mean optical flow
components, V xg,n,l and V xg,n,l, are computed as1

V xg,l =
1

γ2

γ2∑
i=1

Oxl (i) and V yg,l =
1

γ2

γ2∑
i=1

Oyl (i). (1)

The final global motion representation from the optical flow
data becomes Vg = (Vg,l)

L−1
l=1 , where Vg,l = [V xg,l, V

y
g,l].

We extract the centroid stream, Vc, from Fn as follows.
Let H and W be the height and the width in pixels of frame

1For simplicity we drop the subscript n.



Figure 1: The proposed method for proprioceptive activity recognition from multi-modal ego-centric data (inertial and first-
person vision data). Global motion is encoded from the mean of grid optical flow and the derivative of the intensity centroid.
A set of spectrograms is derived from each motion stream. The spectrogram values are scaled, translated, normalized and
stacked. Then CNN features are given as input to a logistic classifier. The classification outputs of each modality are weighted
based on their sparseness and combined prior to the LSTM, which encodes the temporal dependency among activities.
Finally, an output wrapper with softmax normalization produces the activity prediction vector.

fl. LetMl
pq , p, q ∈ {0, 1}, be the first-order image moment

of fl, calculated as the weighted average of its intensity val-
ues as

Ml
pq =

H∑
i=1

W∑
j=1

ipjqfl(i, j). (2)

Similarly to [1, 2, 3], we compute the displacement of the
intensity centroid, Vc,l = {V xc,l, V

y
c,l}, from the first-order

derivative of subsequent centroids as V xc,l = Cxl+1−Cxl and
V yc,l = Cyl+1 − C

y
l , where (Cxl , C

y
l ) is the centroid location

at l ∈ [1, L− 1], Cxl =Ml
01/Ml

00 and Cyl =Ml
10/Ml

00.
Finally, the global motion representation from the displace-
ment of the intensity centroid becomes Vc = (Vc,l)

L−1
l=1 ,

where Vc,l = [V xc,l, V
y
c,l].

3.2. Stacked spectrogram computation

We employ a time-frequency representation (spectro-
gram) to encode the dynamics for each axis of a motion
stream in Sn. The stacking arrangement enables us to en-
code intrinsic relationships among different axial motion
components (Fig. 2). This reduces the effect of different
mounting positions of the wearable sensors.

As In is often triaxial, (x, y, z), whereas Vn has two
components, (x, y), we describe the different stacking ar-
rangements for inertial and visual spectrograms below.

3.2.1 Stacked spectrogram from inertial data

The fast Fourier transform (FFT), F(·), is computed on
each component of the inertial data, In = (Ixn , I

y
n, I

z
n),

to generate the magnitude of a set of spectrograms, Īn =
F(In) = (Īxn , Ī

y
n, Ī

z
n). Similarly to [9], we scale each spec-

trogram component of Īn by α, translate it by τ and apply
normalization to [0,255] as2

J ′n = α ∗ Īn + τ (3)
J ′′n = max(J ′n, 0) (4)
J̄n = min(J ′′n , 255). (5)

2For simplicity, the x, y and z superscripts will be dropped.

In order to encode high-level CNN features from the
spectrograms with 2D convolutions, we stack the normal-
ized spectrograms in J̄n into a 3-channel motion represen-
tation as Jn = (J̄xn , J̄

y
n, J̄zn) ∈ {Ja,n, Jg,n}.

The stacked spectrogram representation of the inertial
data enables us to achieve cross-domain knowledge trans-
fer using pre-trained image models. This avoids the need of
training a dedicated deep network from scratch.

3.2.2 Stacked spectrogram from FPV data

The stacked spectrogram of the motion stream from FPV,
Vn ∈ {Vg,n, Va,n}, is obtained by applying F(·) on V xn
and on V yn . To introduce additional discriminative charac-
teristics, we extend Vn by adding the direction component,
V θn = arctan(V yn /V

x
n ), as a third channel to the stack.

Similarly to the inertial spectrograms, we then scale,
translate and normalize3 V̄n = F(V̄ xn , V̄

y
n , V̄

θ
n ) as

K ′n = α ∗ V̄n + τ (6)
K ′′n = max(K ′n, 0) (7)
K̄n = min(K ′′n , 255). (8)

The spectrograms of the x, y and θ components are
stacked to obtain a 3-channel motion representation, Kn =
(K̄x

n, K̄
y
n, K̄θ

n) ∈ {Kg,n,Kc,n}.
The stacked spectrogram representation of the visual

data enables us to obtain high-level global motion features,
mn, using 2D convolutions only. This is particularly useful
in FPV, whose datasets are smaller than traditional vision
datasets, e.g. Sports-1M [16].

3.3. CNN features extraction

We store Jn and Kn as JPEG images and, similarly
to [2], we employ a CNN framework to extract high-level
temporal features, namely ln ∈ {la,n, lg,n} from Jn and

3The normalization enables us to transfer knowledge from image
datasets, e.g. ImageNet [7].



Figure 2: Stacking of the spectrograms from inertial, In,
and visual, Vn, motion components. The fast Fourier
transform is applied to obtain a time-frequency representa-
tion followed by scaling, translation and normalization that
bound the spectrogram values to [0, 255]. Stacking the spec-
trograms produces a 3-channel representation that enables
transfer learning from image-based models.

mn ∈ {mg,n,mc,n} from Kn. To extract the CNN fea-
tures, we use GoogleNet [29] that was effectively employed
across a range of computer vision problems [8].

3.4. Logistic regression

Each feature stream in ln and mn is separately validated
using a logistic regression to obtain independent classifi-
cation outputs, pn ∈ {pa,n,pg,n} and qn ∈ {qg,n,qc,n},
respectively. The outputs are then weighted by their corre-
sponding discriminative characteristics.

The logistic classification also transforms high-
dimensional features, ln and mn ∈ RD (where D is the
feature dimension), to pn and qn ∈ RC , with C << D.
This reduces the complexity of the LSTM network to en-
code the long-term temporal dependency among activities
and therefore the amount of training data required.

3.5. Sparsity weighted combination

To evaluate the decision confidence of each motion
stream we employ a sparsity measure. First, we apply a
sigmoid function, σ(·), to transform the logistic outputs, pn
and qn, respectively, to rn and sn, which are bounded to
(0, 1), as

σ(ξ) =
1

1 + exp(−ξ)
, (9)

where ξ ∈ {pn,qn}. In order to compute the sparseness of
the logistic classification output, we apply the Hoyer mea-
sure [13], ψ(·), which is effective for a fixed dimensional
vector [14] and is defined as

ψ(η) =

√
C − ||η||1||η||2√
C − 1

, (10)

where η ∈ {rn, sn}, || · ||1 and || · ||2 are `1 and `2 norms,
respectively. The final feature input to the LSTM network,
xn ∈ RC , is the accumulation of the logistic classifica-
tion vectors of the motion streams, weighted by their cor-
responding sparseness measure as

xn =
∑

η∈{rn,sn}

ηψ(η). (11)

3.6. Long short-term memory (LSTM) network

We apply an LSTM framework to encode the long-term
temporal relationships among activities and to overcome
the vanishing and exploding gradient problems of a vanilla
RNNs. LSTM networks use three additional gates (forget,
input and output) that act as switches for monitoring the
information flow from the current input, xn, and previous
hidden state, hn−1, to the current hidden state, hn, via the
memory cell, cn.

The forget gate, fn, helps to discard less useful informa-
tion from the previous cell state, cn−1, as

fn = σ(Wxfxn +Whfhn−1 + bf ), (12)

where bf is the bias in the forget gate.
The input gate, in, weights the candidate cell informa-

tion, c̄n, to be the current state of the cell, cn, as

in = σ(Wxixn +Whihn−1 + bi), (13)
c̄n = φ(Wxcxn +Whchn−1 + bc), (14)
cn = fn � cn−1 + in � c̄n, (15)

where φ(·) represents the tanh activation function, � is an
element-wise product, bi and bc represent the input gate
and memory cell biases, respectively.

The output gate, on, evaluates the cell information, cn,
to predict hn as

on = σ(Wxoxn +Whohn−1 + bo), (16)
hn = on � φ(cn), (17)

where bo represents the output gate bias.
The weight parameters Whf , Whi, Whc and Who ∈

Rν×ν describe the relationship between the previous hid-
den state, hn−1, and the remaining states, fn, in, cn and
on ∈ Rν , respectively, where ν represents the number of
neurons used in each of the states. The parameters Wxf ,
Wxi, Wxc and Wxo ∈ Rν×C describe the relationship be-
tween the sparsity weighted input of the LSTM, xn ∈ RC ,
and the remaining states.

3.7. Output projection wrapper

We finally apply an output projection wrapper on the es-
timated hidden state, hn, and generate the activity predic-
tion vector, an ∈ RC , for Sn using the softmax normaliza-
tion:

an =
exp(Whahn)∑C
c=1 exp(Whahn)

, (18)

where Wha ∈ RC×ν is the wrapping matrix.
The class with the maximum score in an is the winning

class, Anc .



4. Experiments
In this section, we present the validation datasets, de-

scribe the setting of inertial and visual parameters, and com-
pare the proposed framework with state-of-the-art methods.

4.1. Datasets and methods under comparison

We use multiple inertial and visual datasets for the
validation (see Table 1). The inertial datasets are Ac-
tiveMiles [24, 25] and WISDM-v2.0 [17, 19].

ActiveMiles [25] is one of the largest public inertial
datasets with 30 hours (h) of labelled accelerometer and gy-
roscope data (4, 390, 726 samples) with different sampling
rates (50-200 Hz) and collected using smartphones. It con-
tains seven activities: Casual Movement, Cycling, No Ac-
tivity (Idle), Public Transport, Running, Standing and Walk-
ing. Ten subjects participated in its collection.

WISDM-v2.0 [17] consists of accelerometer data
(≈ 41.4 h) collected in uncontrolled environments. The
dataset contains 2, 980, 765 samples at 20 Hz, and six activ-
ities: Walking, Jogging, Stairs, Sitting, Standing and Lying
Down. 563 subjects participated in its collection.

The FPV datasets are HUJI [23] and BAR [3].
HUJI [23] is the largest public dataset for FPV activity

recognition and was collected with a head-mounted cam-
era. We utilise a 15-h subset that contains the following
activities: Go upstairs, Run, Walk, Sit/Stand and Static. Ap-
proximately 50% of the subset dataset (17 out of 44 video
sequences) are collected from YouTube videos.

BAR [3] is the first dataset of basketball activities from
FPV (collected with a chest-mounted camera at 30 fps) and
is composed of 11 activities: Bow, Sit-Stand, Left-right turn,
Walk, Jog, Run, Sprint, Pivot, Shoot, Dribble and Defend.
Four subjects participated in its collection and accelerome-
ter data was also collected for three subjects using a back-
mounted inertial unit at 200 Hz.

To evaluate the recognition performance we use accu-
racy, A, precision, P , and recall,R:

A = 100
tp+ tn

tp+ tn+ fp+ fn
, (19)

P = 100
tp

tp+ fp
, (20)

R = 100
tp

tp+ fn
, (21)

where tp is the number of true positives, fp is the number
of false positives, tn is the number of true negatives and fn
is the number of false negatives. A, P andR are first evalu-
ated per each activity and then the class average is reported
as the performance of a system.

We consider six inertial-based approaches, namely
Handcrafted-1 [25], Handcrafted-2 [5], Catal et al. [6], Al-
sheikh et al. [4], Ravi et al. [24] and Ravi et al. [25].

Table 1: Summary of the datasets used for validation (Acc.:
accelerometer; Gyro.: gyroscope; FPV: first-person vision;
3: availability of a specific modality; NS: not specified; #:
number; h: hour).

Modalities
Inertial Visual

Dataset Acc. Gyro. FPV Activities (#) Subjects (#) Duration (h)
ActiveMiles [25] 3 3 7 10 30
WISDM-v2.0 [17] 3 6 530 41.4
HUJI [23] 3 5 NS 15
BAR [3] 3 3 11 3 1.2

Handcrafted-1 [25] and Catal et al. [6] use low-dimensional
shallow features extracted in the time domain, whereas
Handcrafted-2 [5] includes also frequency-domain features.
Alsheikh et al. [4] and Ravi et al. [24] employed learned
deep features using dedicated networks. Ravi et al. [25] in-
tegrated the deep features in [24] with Handcrafted-1 [25]
features.

4.2. Inertial parameters

We set the parameters similarly to the state-of-the-art
methods [5, 24, 25]. The window length for the inertial data
is λi = 10 s, with no overlap. The dimension of the shal-
low features of Alsheikh et al. [4], Handcrafted-1 [25] and
Handcrafted-2 [5] are 43, 102 and 394, respectively. We set
the scaling factor α = 16 and the translation τ = 128 on
the spectrograms as in [9].

We extract the features from the next-to-last layer of the
inception-v3, i.e. ‘pool 3 : 0’, which provides a feature of
D = 2, 048. In order to compare the inception features
with the state-of-the-art methods in ten fold validation as
in [24, 25], we employ a support-vector machine (SVM)
classifier with a polynomial kernel implemented in MAT-
LAB 2014b4. We use the results reported in [25] for the
comparison.

Equal amount of data is preserved for training and testing
(50% each) in ActiveMiles and WISDM-v2.0. We use fixed
train and test sets to reduce the number of iterations that also
increases with the number of epochs in the LSTM. Each ex-
periment is repeated ten times and the average performance
is reported. We use a one-vs-remaining (OVR) validation
for the logistic regression. Due to the limited dataset size,
the LSTM network has only one hidden layer, which con-
tains ν = 128 neurons, and is trained with a batch size of
10, whereas the number of epochs is 100. We set Ti = 10
samples and the learning rate to be 0.01.

4.3. Visual parameters

We set the length of an activity sample for the visual
component as λv = 3 s, i.e. L = 90 frames for 30 fps,

4The full pipeline, which contains the logistic regression, the sparsity
weighted combination and the LSTM, is instead implemented in Python
3.5.



Table 2: Comparison of the Accuracy, A(%), of state-of-
the-art approaches and the proposed inception features in
the inertial datasets. An SVM is employed with a one-vs-
remaining strategy in a ten-fold validation as in [24, 25].
(‘Prop. Inception’: concatenation of inception features from
the accelerometer and gyroscope data in ActiveMiles and
only the inception features from the accelerometer data in
WISDM-v2.0; ‘Prop. Inception+Handcrafted-2’: concate-
nation of ‘Prop. Inception’ and Handcrafted-2 features.)

ActiveMiles [25] WISDM-v2.0 [17]
Handcrafted-1 [25] 95.0 92.5
Handcrafted-2 [5] 98.1 97.6
Ctal et al. [6] 91.7 89.8
Alsheikh et al. [4] 84.5 82.5
Ravi et al. [24] 95.1 88.5
Ravi et al. [25] 95.7 92.7
Prop. Inception 98.8 97.3
Prop. Inception+Handcrafted-2 98.4 97.9

with 50% overlap. We resize the videos to a resolution of
320× 240 and set the number of grid cells to γ = 100.

The FFT, scaling, translation and normalization of the
spectrograms as well as the inception feature extraction are
performed similarly to what discussed above for the inertial
spectrograms. In the HUJI dataset, we employ a 50% de-
composition for train and test sets. In the BAR dataset, the
sequences from two subjects are used for training, while
the remaining are used for testing. The LSTM has Tv = 20
samples for the HUJI dataset to compensate for the shorter
window length compared to the inertial datasets. For the
BAR dataset, we set Tv = Ti = 5 since the dataset is small
and there are no significantly long temporal dependencies
among samples. All other parameters of the pipeline are the
same as those of the inertial pipeline.

4.4. Discussion

Table 2 and 3 compare the performance of the inception
features with that of state-of-the-art methods validated on
the inertial datasets, without employing the sparsity weight-
ing and the LSTM-based temporal encoding.

Table 2 shows that the overall accuracy, A, of the pro-
posed inception features outperforms existing inertial-based
deep frameworks [4, 24, 25]. Unlike [25], the inception fea-
tures improve the performance without the concatenation of
the shallow features. In addition, Handcrafted-1 [25] is out-
performed by Handcrafted-2 [5], which additionally con-
sists of frequency-domain features.

Table 3 provides per-class recall values, R, between the
baseline deep framework [25] and the proposed CNN fea-
tures, extracted from a pre-trained inception-v3 model. The
proposed features achieve equivalent performance with the
baseline containing both deep and shallow features [25].
Particularly, the concatenation of the inception features
from accelerometer and gyroscope data in ActiveMiles im-
proved the performance of all the activities. The equivalent

Table 3: Comparison of the Recall,R(%), of inception fea-
tures and the baseline [25] (‘Prop. Acc.’: inception features
from accelerometer data; ‘Prop. Gyro.’: inception features
from gyroscope data; ‘Prop. Acc.+Gyro.’: concatenation of
the inception features from the accelerometer and the gyro-
scope data).

ActiveMiles [25]
Casual Cycling Idle Transport Running Standing Walking

Ravi et al. [25] 96.1 96.6 96.5 95.2 98.8 73.0 96.5
Prop. Acc. 88.7 94.4 96.7 94.7 98.8 46.7 94. 8
Prop. Gyro. 92.3 90.7 80.6 89.8 97.5 15.8 91.9
Prop. Acc.+Gyro. 98.2 94.5 97.1 96.8 99.4 54.2 95.8

WISDM-v2.0 [17]
Walking Jogging Stairs Sitting Standing Lying

Ravi et al. [25] 97.2 97.7 77.0 89.3 82.1 85.8
Prop. Acc. 96.1 97.1 66.6 89.6 80.1 88.5

Table 4: Comparison of different fusion strategies on the in-
ertial datasets. (‘-’: not available; C-LSTM: concatenation
of feature groups followed by LSTM only; C-LR-LSTM:
concatenation of feature groups followed by logistic regres-
sion and LSTM; LR-C-LSTM: concatenation of LR ouputs
of the feature groups prior to the LSTM; LR-S-LSTM: ac-
cumulation of LR ouputs of the feature groups prior to the
LSTM).

ActiveMiles [25] WISDM-v2.0 [17]
P(%) R(%) P(%) R(%)

Inception-Acc. 41.6 33.0 65.6 58.0
Individual Inception-Gyro. 40.2 29.9 - -

Handcraft-Acc. [5] 42.1 35.9 65.3 56.0
Handcraft-Gyro. [5] 44.5 37.2 - -
C-LSTM 54.0 43.6 64.3 56.2

Fusion C-LR-LSTM 52.5 33.4 61.5 56.2
LR-C-LSTM 61.4 53.5 66.2 57.8
LR-S-LSTM 61.6 55.2 72.7 58.4

performance between the proposed and the baseline features
in Table 3 suggests that it is possible to avoid the extensive
training of dedicated inertial deep networks by using effec-
tive cross-domain knowledge transfer from vision research.
The significant superiority of the proposed features in their
overall accuracy (Table 2) over the recall values (Table 3) is
partly due to the OVR strategy adopted, in which the true
negative rate is expectedly higher.

Table 4 and 5 assess different strategies of multi-stream
information fusion in the inertial and visual datasets, re-
spectively. The top of Table 4 (Individual) evaluates the
individual classification outputs of feature groups from the
ActiveMiles and the WISDM-v2.0 datasets using a logis-
tic regression (LR). The bottom of Table 4 (Fusion) val-
idates the performance improvements when feature-level
and decision-level fusion strategies are applied on informa-
tion from different modalities and/or streams. C-LSTM and
C-LR-LSTM do not include any merit-based weighting of
the feature groups. As a result, the performance improve-
ments are not significant. LR-C-LSTM and LR-S-LSTM
significantly improve the performance compared to using
individual feature groups. The accumulation of the LR out-



Table 5: Comparison of different fusion strategies on the
FPV datasets. (‘-’: not available; C-LSTM: concatenation
of feature groups followed by LSTM only; C-LR-LSTM:
concatenation of feature groups followed by logistic regres-
sion and LSTM; LR-C-LSTM: concatenation of LR ouputs
of the feature groups prior to the LSTM; LR-S-LSTM: ac-
cumulation of LR ouputs of the feature groups prior to the
LSTM).

HUJI [23] BAR [3]
P(%) R(%) P(%) R(%)

Inception-Grid 57.4 55.4 45.5 48.6
Individual Inception-Centroid 62.1 67.0 37.4 39.0

Inception-Inertial - - 79.0 71.1
Handcrafted-2 [5] - - 76.1 76.3
C-LSTM 72.1 78.1 75.6 74.9

Fusion C-LR-LSTM 70.7 74.6 47.2 49.0
LR-C-LSTM 71.6 73.6 83.7 75.0
LR-S-LSTM 72.3 75.4 83.1 76.3

puts in LR-S-LSTM reduces the input dimension of the
LSTM and therefore reduces the size of the weight param-
eters, Wxo,Wxi,Wxf and Wxc. Generally, the temporal
encoding using the LSTM improves the precision and re-
call by at least 15% in ActiveMiles. The improvement in
WISDM-v2.0 is not significant compared to ActiveMiles.
This is partly due to fewer motion streams in WISDM-v2.0,
which does not contain gyroscope data.

The trend is similar in Table 5, where the fusion of fea-
ture groups improves performance in the FPV datasets. Due
to the larger size of the HUJI dataset, C-LSTM achieves
the highest performance, while the proposed LR-S-LSTM
leads to 18% and 12% precision and recall improvements,
respectively, compared to the best individual performance,
i.e. Inception-Centroid. Since the BAR dataset is very
small, the performance improvement due to the LSTM-
based temporal encoding is not significant. However, the
CNN features extracted from the stacked spectrograms of
the accelerometer data perform equivalently to the hand-
crafted inertial features, and better than the CNN features
from the grid optical flow and the centroid displacement.
This shows the advantage of cross-domain knowledge trans-
fer for human activity recognition when there are multi-
modal information sources.

Figure 3 compares the LSTM-based long-term temporal
encoding with C-LR outputs. C-LR uses feature concatena-
tion followed by logistic regression. The results show that
the LSTM improves the performance across all the datasets
consistently. Particularly, the improvement is significant in
the inertial datasets (Fig. 3a and 3b) partly because the iner-
tial pipeline takes advantages of both handcrafted and CNN
features. By exploiting long-term temporal dependencies,
the LSTM reduces the number of false positives and hence
increases the precision.

Finally, Table 6 compares different weighting strategies
and the sigmoid activation prior to sparsity computation.
The performance improves using the proposed weighting

(a) ActiveMiles [25] (b) WISDM-v2.0 [17]

(c) HUJI [23] (d) BAR [3]

Figure 3: The LSTM-based long-term temporal encoding
with accumulation of the LR ouputs of the feature groups
prior to the LSTM (LR-S-LSTM) outperforms the concate-
nation of the features followed by a logistic regression (C-
LR).

Table 6: Comparison of sparsity weighting strategies on
four datasets. (NSW: accumulation of LR outputs without
sparsity weighting; SWNS: sparsity weighted without a sig-
moid smoothing; LR-S-LSTM: sigmoid applied on the LR
outputs followed by accumulation.)

ActiveMiles [25] WISDM-v2.0 [17] HUJI [23] BAR [3]
P(%) R(%) P(%) R(%) P(%) R(%) P(%) R(%)

NSW 62.5 65.8 70.4 58.4 71.4 74.4 77.6 72.5
SWNS 60.5 60.9 68.6 58.5 71.9 75.5 73.9 70.4
LR-S-LSTM 61.6 55.2 72.7 58.4 72.3 75.4 83.1 76.3

strategy (LR-S-LSTM) in the multi-modal dataset, BAR,
where the inertial and visual features have different dis-
criminative characteristics. The weighting however tends to
suppress discriminative characteristics in ActiveMiles [25],
which contains equivalent discriminative characteristics
among its streams. Moreover, the importance of the sig-
moid smoothing is shown across the datasets as the per-
formance of SWNS (sparsity weighted without sigmoid
smoothing) is in general inferior to that of LR-S-LSTM.
The comparison of existing video-based methods with the
proposed framework is presented in [2].

5. Conclusion
We proposed a multi-modal proprioceptive activity

recognition framework that integrates temporal features
from first-person videos and ego-centric inertial data. We



used stacked spectrograms to exploit successful CNN-based
image models via cross-domain knowledge transfer. More-
over, we proposed a sparsity weighted accumulation of in-
formation from different motion streams and/or modalities
using logistic regression. This approach helps reducing
the dimensions of the input to the LSTM network, which
encodes long-term temporal dependency among activities,
thus reducing the network complexity. The proposed frame-
work was validated on multiple inertial and visual datasets:
state-of-the-art performance is achieved on inertial datasets
using only CNN features without explicitly training a dedi-
cated network and without fusing handcrafted features.

As future work, we plan to apply problem-specific data
augmentation techniques and re-train the last layer of the
CNN with the spectrograms.
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guita. Transition-aware human activity recognition using
smartphones. Neurocomputing, 171:754–767, 2016. 1

[27] M. S. Ryoo, B. Rothrock, and L. Matthies. Pooled motion
features for first-person videos. In Proc. of IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
896–904, Boston, USA, March 2015. 2

[28] S. Singh, C. Arora, and C. V. Jawahar. First person ac-
tion recognition using deep learned descriptors. In Proc. of
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 2620–2628, Las Vegas, USA, June 2016.
2

[29] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. In Proc. of IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 1–9, Boston, USA, June 2015. 4

[30] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri.
Learning spatiotemporal features with 3D convolutional net-
works. In Proc. of IEEE International Conference on Com-
puter Vision (ICCV), pages 4489–4497, Santiago, Chile, De-
cember 2015. 2

[31] L. Wang, Y. Qiao, and X. Tang. Action recognition with
trajectory-pooled deep-convolutional descriptors. In Proc.
of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 4305–4314, Boston, USA, June
2015. 2

[32] J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan,
O. Vinyals, R. Monga, and G. Toderici. Beyond short snip-
pets: Deep networks for video classification. In Proc. of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 4694–4702, Boston, USA, June 2015. 2

[33] K. Zhan, S. Faux, and F. Ramos. Multi-scale conditional
random fields for first-person activity recognition on elders
and disabled patients. Pervasive and Mobile Computing, 16,
Part B:251–267, January 2015. 1


