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Abstract

Temporal information is the main source of discrimi-
nating characteristics for the recognition of propriocep-
tive activities in first-person vision (FPV). In this paper, we
propose a motion representation that uses stacked spectro-
grams. These spectrograms are generated over temporal
windows from mean grid-optical-flow vectors and the dis-
placement vectors of the intensity centroid. The stacked rep-
resentation enables us to use 2D convolutions to learn and
extract global motion features. Moreover, we employ a long
short-term memory (LSTM) network to encode the temporal
dependency among consecutive samples recursively. Exper-
imental results show that the proposed approach achieves
state-of-the-art performance in the largest public dataset
for FPV activity recognition.

1. Introduction
First-person vision (FPV) activity recognition using

wearable cameras is beneficial for assisted living [26, 36,
37], activity tracking [1, 3, 23, 24], life-logging and summa-
rization [4, 5, 12, 17]. Activities of interest can be proprio-
ceptive (e.g. walking) [3, 36, 37], person-to-object interac-
tions (e.g. cooking) [8, 21] or person-to-person interactions
(e.g. handshaking) [22, 25].

Proprioceptive activities are defined based on the full- or
upper-body motion of the subject. Examples include Run,
Walk, Go upstairs (cardiovascular activities) as well as Sit
and Stand (states). However, unlike traditional third-person
vision (TPV) problems, in FPV the body of the subject does
not appear in the video. Moreover, because of the mount-
ing position of the camera and the motion involved, FPV
is characterized by outlier motions, motion blur and self-
occlusions (Fig. 1). Effective encoding of the global motion
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Figure 1: Sample frames showing some of the challenges
in proprioceptive activity recognition in first-person vision:
(a) outlier motions; (b) motion blur; and (c) self-occlusions.

is therefore necessary to accurately recognize propriocep-
tive activities.

Prior works on proprioceptive activity recognition used
domain-specific handcrafted motion features [3, 17]. These
features exploit motion magnitude and direction in time
and frequency, and are often tailored to a specific prob-
lem. Because of the success of convolutional neural net-
works (CNNs) in image-based problems such as object
recognition [6], deep frameworks have also been used for
video-based activity recognition [16, 31, 34]. However, the
recognition performance is still unsatisfactory due to the
difficulty associated with the additional temporal dimen-
sion [16].

The recognition performance of deep frameworks may
improve with the integration of handcrafted features [26,
31, 34]. Examples include the integration of learned spatio-
temporal features with dense trajectory features [31, 34] and
with optical flow features [26]. Deep frameworks for video-
based activity recognition for TPV often discard camera
motion [34] and are therefore ineffective to encode global
motion for FPV. Moreover, existing recurrent neural net-
works are designed to encode only short-term motion dy-
namics [7]. The long-term temporal dependency among ac-



tivities has not been exploited yet.
In this paper we present a long short-term memory

(LSTM) convolutional neural network for the continuous
recognition of proprioceptive activities in FPV (Fig. 2). We
employ two global motion streams: the mean grid optical-
flow and the movement of the intensity centroid. We pro-
pose a global motion representation that encodes the dy-
namics in a video sample (intra-sample encoding) by scal-
ing and translating its time-frequency motion representa-
tion (i.e. its spectrogram). A stacked spectrogram repre-
sentation is derived for each global motion stream to en-
able 2D convolutions for learning and extracting global
motion features. This approach reduces the number of
network parameters and therefore the complexity. Im-
portantly, the stacked spectrogram representation enables
transfer learning from existing CNN models trained on
large image datasets, such as ImageNet [6]. Moreover,
the LSTM network exploits the long-term temporal depen-
dency among different activities (inter-sample encoding).
We validate the proposed framework against state-of-the-
art temporal encoding methods on the largest public dataset
of proprioceptive activities. The software of the proposed
framework is available at http://www.eecs.qmul.
ac.uk/˜andrea/fpv-lstm.html.

The paper is organized as follows. Section 2 covers ex-
isting approaches that employ learning for video representa-
tion. Section 3 presents the proposed framework. Section 4
describes the dataset used for validation and the experimen-
tal results. Finally, Section 5 concludes the paper.

2. Related work
This section covers methods that use 3D convolutions to

learn spatio-temporal features [18, 24, 31], apply temporal
pooling across frame-level CNN features [9, 16, 26, 29, 34,
35], apply recursive networks [7, 18, 35], or employ ranking
functions to encode temporal dependencies [10, 11].

3D convolution-based networks were proposed for
videos as a direct mapping of the 2D convolutions for im-
ages. 3D convolution networks are complex and require
larger datasets for training [31]. Two-stream networks en-
code appearance and temporal information separately using
2D convolutions [9, 18, 29, 34]. This approach requires ef-
fective temporal pooling to summarise motion.

Deep frameworks for the recognition of human activ-
ities in FPV mainly address object-interactive activities.
These frameworks learn local hand-motions and objects us-
ing multi-stream networks [19, 29]. In addition to the spa-
tial and temporal streams, Singh et al. [29] proposed an
ego-stream consisting of complementary 2D and 3D con-
vnets with a class score fusion. Similarly, Ma et al. [19]
proposed appearance- and motion-based streams for con-
current object, action and activity recognition. The appear-
ance stream consists of two segmentation and localization

sub-streams to segment hands and localise the object of in-
terest. However, proprioceptive activities are mainly dis-
tinguished through global motion and therefore require an
effective framework that captures short-term dynamics.

Existing TPV methods are not effective for FPV as they
often discard global motion by subtracting the mean from
the optical flow [28] or by using a homography matrix [34].
Poleg et al. [24] learned motion features from a volume of
grid optical flow in FPV [24]. Ryoo et al. [26] used Over-
feat [27] and Caffe [15] CNNs as spatial feature extractors.
The histogram and the sum of time-series gradient provide
multi-resolution temporal encoding on the frame-level CNN
features. The histogram pooling encodes motion more ef-
fectively than the sum pooling [1]. However, each gradient
pooling doubles the feature dimension and thus increases
the computational cost.

Due to the difficulty associated with learning spatio-
temporal features from raw images, early deep-learning
frameworks for video-based activity recognition hardly out-
performed frame-level inference [14, 16]. Stacks of optical
flow vectors replacing raw images in a two-stream network
can help addressing this problem [28]. Moreover, a network
with two parallel streams can encode spatial and temporal
information separately [9, 18, 29, 34, 35]. However, tem-
poral pooling across frame-level CNN features does not en-
code fine details of the motion data, which are discarded by
consecutive convolutions.

Fernando et al. [10, 11] proposed a video representation
using rank pooling functions that order the frames chrono-
logically. Recurrent neural networks (e.g. LSTM) learn the
motion dynamics and are temporally deep and therefore in-
crease the amount of data required for training when em-
ployed together with CNNs [7, 20, 35]. As a result, these
networks are often applied to encode only short-term dy-
namics, e.g. 0.64 seconds [7].

3. Proposed method
Let C = {Ac}Cc=1 be a set of C activities and V =

(V1, · · · , Vn, · · · , VN ) be N temporally ordered activity
samples, Vn = (fn,1, fn,2, · · · fn,l, · · · fn,L), that might
overlap. Each activity sample contains L frames.

We aim to recognise the activity Anc taking place in Vn
by encoding the short-term (intra-sample) and the long-term
(inter-sample) dependency with the preceding T samples:
Vn−1, Vn−2, · · · , Vn−T .

3.1. Intra-sample temporal encoding

Intra-sample encoding exploits the global motion dy-
namics in Vn using a CNN with 2D convolutions only. We
encode the global motion between a pair of frames using
two motion information sources, namely the frame-level
mean of the grid optical flow, Jn,l, and the velocity of the
intensity centroid, Kn,l, l ∈ [1, L− 1] [3].

http://www.eecs.qmul.ac.uk/~andrea/fpv-lstm.html
http://www.eecs.qmul.ac.uk/~andrea/fpv-lstm.html


Figure 2: The proposed method for the recognition of proprioceptive activities in first-person videos.

We compute the grid optical flow for each subsequent
pair of frames, Bn,l, l ∈ [1, L− 1], that contains horizontal,
x, and vertical, y, components as1 Bl = Bxl + jByl . We use
the Horn-Schunk method [13] because its global smooth-
ness assumption fits our problem of classifying ego-motion.
We chose a grid representation to reduce the computational
cost when encoding the global motion.

Let g be the number of grids in the horizontal and ver-
tical dimensions of Bl. We compute the corresponding
mean of optical flow as Jxl = (1/g2)

∑
Bxl and Jyl =

(1/g2)
∑
Byl .

The intensity centroid of a frame, fl, which is H-pixels
high and W-pixels wide, is derived from the first-order im-
age moments, Mpq , where p, q ∈ {0, 1}. Mpq is cal-
culated as the weighted average of all the intensity val-
ues in fl as Ml

pq =
∑H
r=1

∑W
c=1 rpcqfl(r, c). Similarly

to [3], we compute the velocity of the intensity centroid,
Kl = Kx

l + jKy
l , from the first-order derivative of the cen-

troids as Kx
l = Ixl+1 − Ixl and Ky

l = Iyl+1 − Iyl , where
Ixl =Ml

O1/Ml
OO and Iyl =Ml

1O/Ml
OO.

The final global motion data of Vn consists of Jn =
(J1, J2, · · · , JL−1) and Kn = (K1,K2, · · · ,KL−1). We
encode the intra-sample dynamics from Jn and Kn using a
frequency-domain analysis, and we employ time-frequency
representation (spectrogram) of the motion data. The spec-
trogram contains the frequency response magnitude of the
global motion at different frequency bins. We apply the fast
Fourier transform (FFT) on each axial component of Jn and
Kn.

In order to encode high-level CNN features from the
spectrograms with 2D convolutions only, we stack the spec-
trograms of the horizontal, vertical and direction compo-
nents of Jn and Kn, into 3-channel motion representations,
Ln and Mn, respectively. The direction spectrogram is in-
cluded to exploit its discriminating characteristics (note that
this differs from Ng et al. [35] who filled the third channel
with zeros).

The three spectrogram components from Jn are com-
puted as J̄xn = F(Jxn), J̄yn = F(Jyn), J̄θn = F(Jθn), where

1For simplicity we drop the subscript n.

F(·) represents the magnitude of the fast Fourier transform
and Jθn = arctan(Jyn/J

x
n). The stack of spectrograms from

Jn becomes J̄n = (J̄xn , J̄
y
n, J̄

θ
n). Similarly, K̄x

n = F(Kx
n),

K̄y
n = F(Ky

n) and K̄θ
n = F(Kθ

n) are computed from Kn,
where Kθ

n = arctan(Ky
n/K

x
n). The stack of spectrograms

from Kn becomes K̄n = (K̄x
n, K̄

y
n, K̄

θ
n). Similarly to [7],

we apply scaling, translation and normalization on J̄n and
K̄n to limit their values in [0, 255] and obtain Ln and Mn,
respectively. If α and τ are the scaling and translation
factors, Ln is computed as follows: L′n = α ∗ J̄n + τ ;
L′′n = max(0,L′n) and Ln = min(255,L′′n). Similarly
M′n is computed from K̄n followed by M′′n and Mn. The
scaling, translation and normalization operations facilitate
transfer learning from image datasets, e.g. using CNN mod-
els that are pre-trained on ImageNet [6].

We employ CNN models to extract high-level global
motion features from the low-level spectrogram represen-
tations Ln and Mn. This improves the generalizing capa-
bility of the features. Since the motion is represented as a
stacked spectrogram, it is possible to employ a sequence of
2D convolution filters to extract the high-level intra-sample
features. In addition to the benefit of transfer learning, our
2D CNN-based approach reduces the number of network
parameters and hence the amount of data required for train-
ing. This is useful as FPV datasets are much smaller than
TPV datasets (e.g. Sports-1M [16]).

As a feature extractor we use GoogleNet [30], whose
inception module contains multiple convolution outputs of
different filter sizes in parallel rather than in cascade. It
is a common practice to utilise ImageNet-trained models on
other data such optical flow images [7]. Though the spectro-
gram information is different from the ImageNet dataset on
which GoogleNet is trained, the scaling, translation and nor-
malization operations followed by stacking help to mimic
RGB image characteristics. The plausibility of inception
features can be improved by retraining, ideally, the whole
network or the last layers using spectrograms. We extract
the inception features pn and qn ∈ RD, from Ln and Mn,
respectively. We combine these features as xn = (pn,qn)T ,
where (·)T represents the transpose operation.



The concatenated intra-sample inception feature, xn ∈
R2D, encodes the temporal evolution of motion magnitude
and direction inside a segment, which is later used as an
input to the inter-sample temporal encoding.

3.2. Inter-sample temporal encoding

We aim to exploit the long-term temporal relationships
among consecutive samples (i.e. inter-sample encoding) to
improve inference. To this end we use a recurrent neu-
ral network (RNN) that uses previous hidden information,
hn−1 ∈ Rν , to estimate the current hidden state, hn ∈ Rν ,
where ν is the number of neurons in the hidden layer.

The vanishing and exploding gradient problems in basic
RNNs hinder learning long-term temporal dependencies. A
vanishing gradient happens when it becomes zero due to
consecutive multiplications of small gradient values across
T temporal indices. This phenomenon incorrectly signals
optimal learning of the network parameters. An exploding
gradient happens when it becomes too large to minimize
due to its consecutive multiplications across temporal in-
dices. This may saturate the weights at the high level and
incorrectly signal a high discriminative capability.

To overcome the vanishing and exploding gradient prob-
lems, we employ an LSTM network that uses three addi-
tional gates: forget, input and output. These gates act as
switches for monitoring the information flow from the cur-
rent input, xn, and previous hidden state, hn−1, to the cur-
rent hidden state, hn, via the cell state, cn.

The forget gate, fn, helps to discard less useful informa-
tion from the previous cell state, cn−1, as

fn = σ(Wxfxn +Whfhn−1 + bf ), (1)

where σ(·) represents the sigmoid activation function and
bf is the bias in the forget gate.

The input gate, in, weights the candidate cell informa-
tion, c̄n, to be the current state of the cell, cn, as

in = σ(Wxixn +Whihn−1 + bi), (2)
c̄n = φ(Wxcxn +Whchn−1 + bc), (3)
cn = fn � cn−1 + in � c̄n, (4)

where φ(·) represents the tanh activation function, � is an
element-wise product, bi and bc represent the input gate
and the memory cell biases, respectively.

The output gate, on, evaluates the cell information, cn,
to predict hn as

on = σ(Wxoxn +Whohn−1 + bo), (5)
hn = on � φ(cn), (6)

where bo represents the bias in the output gate.
The weight parameters Whf , Whi, Whc and Who ∈

Rν×ν describe the relationship between the previous hid-
den state, hn−1, and the remaining states, fn, in, cn and

on ∈ Rν , respectively, where ν represents the number of
neurons used in each of the states. The parameters Wxf ,
Wxi, Wxc and Wxo ∈ Rν×2D describe the relationship be-
tween xn ∈ R2D and the remaining states.

Finally, an output projection wrapper is applied that pro-
vides the activity prediction vector, an ∈ RC , for Vn as

an =
eWhahn∑C
c=1 e

Whahn

, (7)

using the softmax normalization and Wha ∈ RC×ν is the
wrapping matrix.

The class with the maximum score in an is the winning
class, Anc .

4. Experiments
In this section we describe the setting of parameters used

in the intra-sample and the inter-sample encoding stages,
the state-of-the-art methods selected for comparison with
the proposed approach and the dataset used for validation.

4.1. Methods under comparison

We compare the proposed approach against four state-
of-the-art video representation methods, namely C3D (3D
convolutional networks [31]); TDD (trajectory-pooled deep
descriptors [34]); VD (VideoDarwin [10]); and TGP (time-
series gradient pooling [26]).

C3D employs 3D convolutions to learn spatio-temporal
features and hence requires large datasets for training. TDD
is a highly discriminative video representation that encodes
both spatial and temporal streams. Unlike dense represen-
tations [32], TDD exploits a trajectory representation [33]
that takes into account the camera motion. VD uses ranking
functions and handles handcrafted or CNN features [10].
TGP is used as a baseline method, which employs his-
togram and sum pooling of each time-series feature ele-
ment.

All experiments are conducted with 100 iterations and
the average performance of the iterations is reported as a
final recognition result.

4.2. Dataset and train-test split

HUJI2 is the largest public dataset for FPV activity
recognition [24]. A head-mounted camera is used for col-
lection. We used the 15 hours (h) subset that contains the
following activities: Go upstairs, Run, Walk, Sit/Stand and
Static (see Table 1).

Approximately 7.5 h of video (50% of the dataset) is
collected from publicly available YouTube videos. Exam-
ples include Go upstairs sequences with significant illumi-
nation changes and Run sequences that contain outlier mo-

2http://www.vision.huji.ac.il/egoseg/videos/dataset.html



Table 1: Number of video segments and their duration per
activity in the HUJI dataset [24]. Note the class imbalance
between Run (47%) and Walk (7%). (#: number; min: min-
utes. ‘% of total’ is the ratio of the duration of an activity to
the total duration of the dataset).

Go upstairs Run Walk Sit/Stand Static Total
Segments (#) 13 13 19 26 14 85
Duration (min) 151 409 62 143 104 869
% of total 17 47 7 16 12 100

Key frames

tions (e.g. other runners). Since we are interested in activi-
ties produced by full- or upper-body motion, we discarded
videos where the subject travels by car or by bus, or rides
a bicycle. We merge Sit and Stand as single Sit/Stand state
since they may both involve large head motion when the
subject is mostly stationary. Static is included as a refer-
ence as it does not contain a significant head and/or body
motion.

We applied equal decomposition of the sequences to
train and test sets. Among the 44 sequences in the dataset,
the first 22 videos are used for testing and the remaining
22 videos are used for training. Due to the class imbal-
ance problem shown in Table 1, we select the second half
for training as it contains an equivalent number of samples
among activities.

The performance measures to evaluate the recognition
performance are precision, P , recall,R, and F-score, F :

P = 100
tp

tp+ fp
, (8)

R = 100
tp

tp+ fn
, (9)

F = 100
2PR
P +R

, (10)

where tp is the number of true positives, fp is the number
of false positives and fn is the number of false negatives.
We first evaluate P and R per class and finally report their
average as the overall system performance. The overall F
is computed from the averaged P andR.

4.3. Parameters

We set the length of an activity sample to 3 seconds, i.e.
L = 90 frames for the 30 fps frame rate in the HUJI dataset.
We also resize the videos to a resolution of 320× 240. For
grid optical flow computation, we set the number of grids as
g = 100 in each of the horizontal and vertical dimensions.
We apply the FFT on each window of 15 frames in the sam-
ple with a stride of one frame to generate the spectrograms

in the intra-sample encoding. The scaling factor of α = 16
and translation of τ = 128 are used in the stacked spectro-
gram representation.

We use inception-v3 trained on ImageNet [6] to extract
the CNN or inception features on the spectrogram images.
The inception-v3 reaches the top-5 error rate of 3.46% on
ImageNet. We extracted the features from the next-to-last
layer of inception-v3, i.e. ‘pool 3 : 0’, which provides D =
2, 048 dimensional high-level global motion feature.

For the LSTM network, we focus on its simplicity due to
the limited dataset size and high dimensional feature input.
Thus, we use only a single hidden layer, which contains
ν = 128 neurons trained with a batch size of 100 and with
80 epochs. We set the recursive duration to contain T = 20
samples and the learning rate to be 0.01.

For VD, similarly to [3] we use as input for the rank-
ing functions concatenated histograms of motion magnitude
and direction with 15 and 36 bins, respectively. This re-
sults in a feature vector with D = 102. We use the C3D
model pre-trained on the Sports-1M dataset [16] for C3D
feature extraction. For an activity sample of L = 90 frames,
D = 4, 096 long C3D feature is extracted from the sixth
layer (′fc6 − 1′). Average pooling of the C3D features ex-
tracted for each chunk of 16 frames is performed for the
final C3D representation of the activity sample.

We use the TDD model pre-trained on the UCF101
dataset. Appearance features are extracted from conv4 and
conv5 layers of the spatial stream, and motion feature are
extracted from conv3 and conv4 layers of the temporal
stream. Each layer provides D = 512 long feature vec-
tor. We also apply both spatio-temporal and channel nor-
malizations. The final TDD feature for an activity sample is
D = 4, 096 feature vector.

TGP is derived by applying sum and histogram pool-
ing on the gradient of frame-level inception features. TGP
provides D = 12, 288 dimension from input of D =
2, 048 inception feature. A one-vs-all support vector ma-
chine (SVM) classifier is used to validate the state-of-the-art
methods and the proposed intra-sample encoding.

4.4. Discussion

The confusion matrices in Figure 3 evaluate the combi-
nation of inception features from grid optical flow data and
the movement of the intensity centroid. The performance of
both intra-sample and inter-sample encoding are improved
when grid inception (GI) and centroid inception (CI) fea-
tures are concatenated (i.e. CGI). Misclassifications of Go
upstairs to Sit/Stand happen when subjects Stand to take a
rest during Going upstairs. Moreover, Run and Walk are
sometimes misclassified due to the similarity of their mo-
tion dynamics. The stationary nature of the subject during
Sit/Stand and Static also causes misclassifications.

Table 2 compares the performance of state-of-the-art



(a) Intra-sample temporal encoding: inception features + SVM

(b) Inter-sample temporal encoding: inception features + LSTM

Figure 3: Performance improvement by combining grid-based (GI) and centroid-based (CI) inception features in (a) intra-
sample and (b) inter-sample temporal encoding.

Table 2: Average per-class recall, R, precision, P , and F-
score, F , of existing methods compared with the proposed
intra-sample encoding framework. An SVM classifier is
used for all methods. (Proposed*: the SVM output after
intra-sample encoding without inter-sample encoding.)

Method P(%) R(%) F(%)

TGP [26] 57 61 59
VD [10] 59 62 61
C3D [31] 64 65 65
TDD [34] 63 73 68
Proposed* 70 74 72

methods with the proposed intra-sample encoding. The fea-
tures from all methods are validated on an SVM classifier.
The concatenation of inception-features extracted from the
grid-based and centroid-based stacked spectrograms (Pro-
posed*) outperforms existing methods. VD [10] has the
smallest feature dimension (D = 102), but achieves slightly
higher performance than the baseline TGP [26], which em-
ploys the histogram and sum pooling of the time-series gra-
dient of the inception features. TDD [34] uses multi-stream
handcrafted and learned features, and is second to the pro-
posed framework.

Table 3 evaluates the LSTM-based inter-sample encod-
ing of the proposed framework and its effectiveness when

applied on state-of-the-art methods. The proposed frame-
work achieves the best performance in the majority of the
activities, i.e. Run (81%), Walk (91%) and Sit/Stand (97%);
but it is is inferior to TDD [34] and C3D [31] in recognis-
ing Go upstairs and Static, respectively. This is because
our framework uses motion only, while TDD and C3D also
include spatial (appearance) information. For example, Go
upstairs can be better distinguished using the appearance
features of the staircases. In addition, the recognition of the
Static state can exploit the appearance information of simi-
lar indoor environments available in the dataset.

5. Conclusion

We proposed a long short-term memory convolutional
neural network that recognises human activities from first-
person videos. The network uses a global motion repre-
sentation that enables the encoding of temporal information
with a 2D CNN. In addition to its simplicity, the proposed
representation enables transferring knowledge from image
datasets and reduces the need of large problem-specific
training data. On top of the CNN-based intra-sample tem-
poral encoding, we proposed an LSTM-based encoding
of long-term temporal dependencies among samples. Re-
sults showed the benefit of the combination of grid-based



Table 3: Per-class recall performance,R(%), with and without the proposed LSTM-based inter-sample encoding.

Without LSTM With LSTM
Go upstairs Run Walk Sit/Stand Static Go upstairs Run Walk Sit/Stand Static

TGP [26] 52 34 82 57 81 52 34 83 60 84
VD [10] 54 67 46 73 70 55 71 55 89 89
C3D [31] 67 74 73 57 53 63 68 74 47 94
TDD [34] 68 76 95 52 72 70 71 86 83 39
Proposed 54 79 83 87 68 59 81 91 97 66

and centroid-based motion features as well as of the intra-
sample and the inter-sample temporal encoding strategies.

The proposed network can be used in multi-modal prob-
lems using a fusion strategy that accounts for the indepen-
dent discriminative characteristics of feature groups [2].

As future work, we plan to reduce the dimensionality of
the input to the LSTM network by simplifying the temporal
encoding complexity to speed-up the training phase.
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