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Abstract

We propose an active visual tracker with collision avoid-
ance for camera-equipped robots in dense multi-agent sce-
narios. The objective of each tracking agent (robot) is to
maintain visual fixation on its moving target while updating
its velocity to avoid other agents. However, when multi-
ple robots are present or targets intensively intersect each
other, robots may have no accessible collision-avoiding
paths. We address this problem with an adaptive mech-
anism that sets the pair-wise responsibilities to increase
the total accessible collision-avoiding controls. The final
collision-avoiding control accounts for motion smoothness
and view performance, i.e. maintaining the target centered
in the field of view and at a certain size. We validate the pro-
posed approach under different target-intersecting scenar-
ios and compare it with the Optimal Reciprocal Collision
Avoidance and the Reciprocal Velocity Obstacle methods.

1. Introduction

Robots that actively track a person can offer assistance in
shops, airports and museums. Active tracking with a camera
aims to maintain the target at a desired position and size on
the image plane [12] by either optimization [19] or various
feedback controllers [8,12]]. The motion of an active visual
tracker is constrained by its limited field of view and the tar-
get dynamics. When multiple robots coexist in a scene and
track their own target, collisions are likely to occur when
the paths of the targets intersect each other. For multi-robot
collision avoidance, as robots react to the actions of other
robots, reciprocal avoidance strategies are essential to avoid
oscillations.

Methods exist that apply human strategies for safe robot
navigation, where the strategy can be learned from extracted
trajectories [10] or based on cognitive studies [L1]. A pop-
ular method for multi-robot collision avoidance is Optimal
Reciprocal Collision Avoidance (ORCA) [17]. ORCA is a
velocity-based method that guarantees collision-free motion
in a densely-packed environment. Each robot independently
computes the closest collision-avoiding velocity to its pre-

ferred velocity (i.e. the velocity the robot would move at if
there were no other robots in its way). Assuming that each
robot can sense the state of neighboring robots and infer
their preferred velocities, ORCA does not require commu-
nication among robots.

When targets are intensively intersecting, robots may
face the empty-set problem (i.e. without accessible
collision-free velocities [17]). The original ORCA adjusts
the pair-wise velocity constraints in order to have at least
one accessible velocity in the case of an empty-set occur-
rence [17]. However, by doing so the robot motion is com-
pletely dependent on neighboring robots. Instead, we pre-
vent the occurrences of the empty-set problem by adapting
the pair-wise responsibilities. The pair-wise responsibility
can assign the right of way to the agent with a constant
higher priority [6], while we set the pair-wise responsibil-
ity at run time to reduce the responsibility in avoiding other
robots for a robot with a smaller set of accessible collision-
avoiding velocities.

In this paper, we propose an adaptive ORCA (A-ORCA)
method that addresses the empty-set problem under chal-
lenging target-intersecting scenarios. The proposed method
adapts the pair-wise responsibility with the objective of in-
creasing the accessible collision-avoiding velocities of a
pair of robots in a fair way. The final collision-avoiding
control is achieved via an optimal controller that accounts
for both view performance and motion smoothness, and
satisfies the velocity constraints derived with A-ORCA.
We compare the proposed method with ORCA [17] and
RVO [16] under different target-intersecting scenarios.

2. Related work

ORCA is based on the concept of Velocity Obstacle
(VO). VO was originally proposed for a robot to avoid mov-
ing obstacles with known paths by defining the set of veloc-
ities that can lead to collisions within a time horizon [7]]. In
multi-robot scenarios, each robot is a reactive moving ob-
stacle for other robots. Therefore oscillations are likely to
occur if a robot avoids other robots without accounting for
their reactive nature. Reciprocal Velocity Obstacle (RVO)
avoids reactive robots by using the average of the preferred
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Table 1. Multi-agent collision avoidance methods based on Opti-
mal Reciprocal Collision Avoidance. KEY — Ref: reference; AVT:
Active Visual Tracking; Nav: Navigation; Holo: Holonomic; Non-
holo: Nonholonomic; Prop: Proposed method.

Ref Application Agent shape Agent kinematics Equal
AVT | Nav | Circular Other Holo | Nonholo | responsibility
2] v v v v
13] v Cylindrical v v
[4] v v v v
5 v Elliptical v v
[6 v v v Priority-based
I15] v v v v
[16] v v v v
1171 v v v v
Prop v v v Adaptive

velocities together with VO, in order to obtain a set of re-
ciprocal collision-avoiding velocities [16]]. Based on RVO,
ORCA further defines the set of velocities that are both re-
ciprocally collision-avoiding and close to the preferred ve-
locity [17]. Each robot shares equal responsibility to avoid
another robot. The original ORCA considers disk-shaped
robots with a holonomic model constrained by a speed
limit (a circular boundary in the velocity space). Deriva-
tive works extend ORCA in terms of robot shapes [3}15] and
robotic kinematics [2, |3} 14, [15]].

ORCA-related works apply to robots navigating to fixed
goal positions [2} 4, S| 115} 16} [17]. In the field of active
visual tracking, the main focus is the control for visual fix-
ation [8 [12]] or for minimizing tracking uncertainty [19].
While there is work for multiple robots tracking one target,
collision avoidance is achieved via maintaining a predefined
formation [[13].

To the best of our knowledge, no works have addressed
multi-robot collision avoidance among robots that are in-
dependently conducting active visual tracking. Collision
avoidance is more challenging during view maintenance as
the paths of the targets may frequently intersect with each
other.

Methods for multi-robot collision avoidance with
ORCA [2}14, 15,115, 16} [17] are compared in Table E}

3. Collision-free active visual tracking
3.1. Problem definition

Let {c1, ¢, ..., ¢, ..., car } be M disk-shaped robots that
aim to track M point targets. Each robot is actively track-
ing one target. Let ¢ be the index for robots, n the in-
dex for targets and ¢ the time step. Each robot has radius
r, position p,(¢) and velocity v;(t) in the global coordi-
nate system. Let the distance between c; and its target be
din(t) = ||p,,(t) — p;(t)||. Let 6, (t) € (—m, 7] be the an-
gle between the robot heading direction and its target (see
Fig.[I).

Each robot is equipped with a camera whose field of
view (FoV) is a sector and whose orientation is the same as

Figure 1. Top-view for active visual tracking with four robots of
radius r. Point-targets are indicated with different colors that cor-
respond to their IDs. Each robot has a camera with a sector-shaped
field of view facing the same direction as the robot heading direc-
tion. The robot located at p, is tracking its target at p,,. d;» is the
distance from the robot to the target and d;,, is the angle from the
robot heading direction to the target.

the robot heading direction. Each ¢; aims to fixate its target
by maintaining it at a certain distance away in the camera
heading direction while avoiding collisions with any other
robot ¢;, i.e. d;;(t) > 2r,Vj, j # i.

We assume that the assignment between robots and tar-
gets is given and ambient cameras localize targets and
robots. These positions are communicated to the robots [4}
14, [18]. At initialization, robots exchange (or are given)
their preferred velocities. Using the positions of nearby
robots and the target to follow, a robot calculates at each
time step, ¢, its preferred velocity for active tracking in or-
der to maintain the target at the desired position in the FoV,
i.e. the FoV center [18]], in a smooth manner.

Using the positions and preferred velocities of neighbor-
ing robots, each c; derives the set of velocities that guar-
antees no collisions in 7 time steps and computes the final
control within that set. A short time horizon 7 leads to late
aversion of avoidance, which can result in empty-set cases
as the closeness among robots leaves no space to move;
whereas a large 7 averts early avoidance that leaves more
space to move, but imposes restrictive velocity constraints
which can also cause empty sets [4].

3.2. The controller

We use a car-like kinematic model [2]]. The robotic con-
trol a;(t) consists of speed v;(¢) and steering angle w;(t),
and is bounded as |v;(t)| < Vmax and |w;(t)| < Wmax. We
compute the robotic control a;(¢) by minimizing two cost
functions that encode the objectives of maintaining the tar-
get at the FoV center and motion smoothness.

Let pd (t +1) = M and pl,(t +1) =
20in(+1) pe the ratio of the distance and angle deviation
to the FoV center at ¢ + 1 with respect to half view range 3
and half view angle % We estimate d;,, (t+1) and d;,, (t+1)




based on the predicted target state and predicted robot state
given the control a;(t).

The first cost function, J;(t), penalizes the deviation of
the target position from the FoV center [18]:

J1(t) = exp (\/ﬂ?n(t + 1)+ pf, (t+ 1)2) Y

Ji1(t) < exp(l) ensures that the target locates within the
FoV. The minimum, J; (¢) = 1, is achieved when the target
is at the center of the FoV.

The second cost function, Ja(t), penalizes accelera-
tions/decelerations induced by J; (¢):

Jg(t) = exp <||Vl(t + 1) — Vl(t)|> ’ 2)

Vmax + [|[Vi(t) ]

where vpax + ||V;i(t)|| is the maximum speed difference of
arobot between two consecutive time steps. The minimum,
Ja(t) = 1, is achieved when the robot does not change ve-
locity.

The control is computed by minimizing with brute force
the two cost functions:

a;(t) = argmin, (AJ1(¢) + (1 — A\)J2(t)), 3)
where A € [0.5, 1]. A starts at 0.5 as the main objective is
to maintain the target centered in the FoV. We vary )\ based
on whether the robot has its target inside the FoV. When the
robot loses its target from the FoV, the objective is to re-
capture it as soon as possible, and we therefore set A\ = 1
without accounting for motion smoothness. When the robot
has its target inside the FoV, the objective is to maintain the
target centered in the FoV with smooth motion. Based on
a sensitivity test on A\, we experimentally set A = 0.6 as it
provides the best trade-off between the decrement of .Jy ()
and the increment of J5(t).

3.3. Accessible collision-avoiding velocity set

Let us considelﬂ a pair of robots ¢; and ¢; at position p;
and p; respectively, aiming to achieve their preferred veloc-
ity v; and v (Fig. a)). Let O7 ;(0) be the velocity obstacle
of ¢; induced by c;, which is the set of relative velocities of
¢; with respect to ¢; that can lead to a collision within a time
horizon 7 (Fig. b)):

07;(0) = {v3t € [0, 7], [[tv]] > [|py; — 27|}, 4
where p,; = p; — p; is the relative position of ¢; with re-
spect to c;. The set of collision-avoiding relative velocities

for ¢; to avoid ¢; in 7 time horizon, A j (0), is therefore:

A7;(0) = {v[v £ O ;(0)}. )

ITo simplify the notation we omit ¢ from here.
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Figure 2. Optimal reciprocal collision-avoiding velocities. (a)
Robot ¢; and ¢; with radius 7 at p; and p; with preferred veloc-
ity v; and vj, respectively. (b) The gray shadow area indicates
A7 ;(0), the relative velocities of ¢; that are collision-avoiding to
c; in 7 time steps. u; ; is the minimal velocity for v; ; to get out of
the velocity obstacle and n; ; is the outward normal at v; ; + u; ;.
(c) The gray shadow area indicates the velocities of ¢; that are op-
timal reciprocal collision-avoiding to ¢; in 7 time steps (A;‘”jf of
¢;) when ¢; shares a;, ; responsibility to avoid c;.

Reciprocal collision avoidance is possible when ¢; and ¢;
choose to move at v; and v; respectively and v; € A7 ;(v;)
and v; € A7, (v;) [17].

ORCA [17] defines the set of velocities that is not only
reciprocal collision-avoiding but also close to the preferred
velocity. Let vi,;, = v; — v} be the relative preferred
velocity of ¢; with respect to ¢;. Let u; ; be the vector
starting from v ; to the closest point on the boundary of
0; ;(0) (Fig. b)). u; ; is the minimal relative velocity
change between ¢; and ¢; to avoid collisions within 7. n; ;
is the outward plane normal at v; ; + u; ;.

Each robot shares a partial responsibility for collision
avoidance. Let a; ; and a;; be the responsibility c; and c;
take to avoid each other and a; j+a;; = 1. The responsibil-
ity a; ; indicates how much ¢; will compensate u;_; in order
to shift v; ; out of the velocity obstacle. The set of optimal
reciprocal collision-avoiding velocity for ¢; to avoid ¢; in 7
time steps is:

A7 = {vlv— (v +ai ) my; <0L (6)

A:JT are the velocities that lie at the half-plane (the plane
in gray shadow in Fig. [(c)) in the direction of n, ;, after
shifting O; ;(0) by v; + a; ju; ;. In the same way, we can
construct A}/ for ¢;.

Let V; be the set of velocities that are accessible under
the speed/acceleration limits and nonholonomic constraint.
Each robot ¢; estimates the pair-wise A;‘)’]-T,ch e CA,
where C#! refers to the set of robots within the avoidance
range of c¢;. The final set of accessible collision-avoiding
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Figure 3. The accessible collision-avoiding velocity set (gray area)
is influenced by the pair-wise responsibility sharing. v; and v; are
the preferred velocities of ¢; and c; respectively. The collision-
avoiding velocities of (a) ¢; induced by c; and (b) ¢; induced by c;
with equal responsibility, where c; is likely to experience empty-
set if surrounded by other robots. The collision-avoiding velocities
of (¢) ¢; induced by c; and (d) c; induced by c; with adaptive
responsibility.

velocities for ¢;, AJ"", is

ArT = () AT NV (7
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When neighboring robots leave no space for a robot to
move (i.e. A" = (), the robot may lose its target. A robot
should therefore reduce the occurrences of empty-set cases.

3.4. Adaptive responsibility sharing

When a robot has a small set of accessible collision-
avoiding velocities induced by a neighboring robot, it is
more likely to incur an empty-set case if it is surrounded by
additional robots. The choice of the responsibility between
a pair of robots influences the total number of accessible
collision-avoiding velocities (see Fig. 3).

Let us re-write the notation A to A7/ (a) to indicate
the dependence on the responsibility. Our objective is to
maximize the fotal number of optimal reciprocal collision-
avoiding velocities, while maintaining the fairness, i.e. a
balanced distribution of accessible collision-avoiding veloc-
ities between a pair of robots.

We compute the percentage of optimal reciprocal
collision-avoiding velocities for ¢; induced by c¢; as

pf; (a) = Al‘lzi(la” where || is the cardinality of a set.

The responsibility for ¢; to avoid ¢; is computed by
maximizing the average percentage of optimal reciprocal
collision-avoiding velocities while accounting for fairness:

pi(a) + oL (1 a)
a;; = argmax, (f,-’j(a) - 2J’ . (8

where f; ;(a) indicates the fairness of the percentage of op-
timal reciprocal collision-avoiding velocities between a pair
of robots. In order to have a continuous and bounded fair-
ness measure to combine with the average ratio, we adopt
the Jain’s fairness measure [9]]:

*T 57 ()
fuslwy = PT@F ol @) ©)
2077 (@) + 0L (a))

Note that the responsibility can be a negative value as
long as the responsibilities shared by a robot pair sums to 1.

We compute the optimal a; ; by searching in a dis-
cretized space bounded by [—amax, Gmax + 1]. We com-
pute the adaptive responsibility only if a robot has less than
half of accessible collision-avoiding velocities when shar-
ing equal responsibility. The adaptive responsibility a; ; for
¢; to avoid ¢; is computed in the same way. We can guar-
antee a; ; + a;; = 1 due to the symmetric property of the
objective function.

Note that this scheme reduces the chances of the occur-
rence of empty-set cases but does not prevent empty-set
cases. When an empty-set case occurs, we use a simple
braking-recompute strategy: the robot with an empty set
stops and all other robots recompute the collision-avoiding
velocity sets. The process is repeated until no robot is in an
empty-set situation.

4. Validation

We validate the proposed framework, A-ORCA, in terms
of the influence of collision avoidance on target viewing
performance and compare it with the avoidance strategies
based on RVO [16] and ORCA [17].

We quantify the empty-set occurrences, ¢, as the empty-

set ratio
] MT
e=qpp 22 ki) (10)

=1 t=1

where T' is the experiment time steps, M is the num-
ber of robots and b$(¢) is a binary value indicating
whether the set of accessible collision-avoiding velocities
is empty (A" (t) = (). Similarly, we quantify the target



Figure 4. The four scenarios used for validation. The color of the
trajectory indicates the target ID. (a) Scenario I with a pair of tar-
gets intersecting at different angles ranging from 0.17 to 7 with
step size 0.17. The target tracked by c; is fixed at angle 0 and we
vary the angle of the target tracked by c2. (b) Sample Scenario 11
with 10 targets with randomly distributed intersecting angles be-
tween a pair of neighbors. (c) Sample Scenario III with 20 targets
that intersect at random times and locations. (d) Scenario IV with
10 trajectories extracted from a video sequence of the PET2009
dataset.

viewing performance of robots, 7, by the viewing ratio

, MT
Uzmzzbf(t%

=1 t=1

(1)

where bY(t) is a binary value for the presence of target
within FoV. Results are averaged over 10 independent runs.

We use a real scenario and design three synthetic sce-
narios to investigate the influence of the intersecting angles
between targets and the number of intersecting targets on
the methods (Fig. [d). Targets are initialized along a circle
with their initial velocity heading towards the center of the
circle. Each target moves at a speed of 1m/s with addi-
tional Gaussian noise bounded within [—0.1m/s,0.1m/s].
Scenario I increases the intersecting angle between a pair of
targets from 0.17 to 7 with step size 0.17 (Fig. f[a)). Sce-
nario II increases the number of targets from 2 to 10 and
randomly sets the intersecting angle between two neighbor-
ing targets (Fig. @(b)). Scenario III increases the number
of targets from 2 to 30 and creates sparser target intersec-
tions by varying the velocity direction over time (Fig. fc)).
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Figure 5. Target viewing ratio, 7, and empty-set ratio, €, for dif-
ferent collision avoidance methods when increasing the number of
robots. Top row: viewing ratio (a) and empty-set ratio (b) under
Scenario II. Bottom row: viewing ratio (c) and empty-set ratio (d)
under Scenario III with eight or more robots (all methods achieve
full viewing ratio without empty-set with less than eight robots).

Additionally, we test the methods in Scenario IV with real
people trajectories extracted from the PETS2009 dataseﬂ
The trajectories of 10 people of 60s duration is extracted
from the S2L1 sequence and map to the ground plane with
the provided camera calibration (Fig. Ekd)).

In all scenarios, robots follow a car-like model and are
initialized with their target centered in their camera FoV.
Each camera has the viewing angle ¢ = 90° and viewing
range 7, = 5m. We set the robot avoidance range to 2v,,x
as it is the worst case for a collision between a pair of robots
in the next time step. We set 7 = 6 for Scenario II and
7 = 3 for the other scenarios. A larger 7 allows for earlier
aversion when robots are densely intersecting (Scenario II),
and improves the viewing ratio.

Under Scenario I, all methods successfully avoid colli-
sions and robots keep their target in their FoV regardless of
the variation in target intersecting angles. Under Scenario
II, the viewing ratio deteriorates as the number of robots,
M, increases. When M > 7, robots using ORCA achieve a
limited average viewing ratio (60%) with a small standard
deviation because all robots get stuck at the intersecting po-
sition (Fig.[5(a)). Robots using A-ORCA achieves a higher
viewing ratio than those using ORCA, as empty-set occur-
rences are reduced by almost half (Fig.[5(b)). The pair-wise
optimization does not provide guarantee for non-empty sets,
and this explains that A-ORCA fails with M/ = 10. In-

Zhttp://www.cvg.reading.ac.uk/PETS2009. Last accessed: 07/04/2017



terestingly, robots using RVO may achieve higher viewing
ratios than ORCA. Compared to ORCA, RVO has more
restrictive velocity constraints which prevent robots from
getting too close to each other and therefore provides more
space for robots to avoid each other and recapture their tar-
get (see [).

Under Scenario III, ORCA-based methods outperform
RVO as the target trajectories require less effort for avoid-
ance (Fig.[5[c)). Although A-ORCA reduces the empty-set
ratio in this scenario, it may achieve a slightly worse aver-
age viewing ratio compared to ORCA when 13 < M < 16.
This is because A-ORCA adapts the responsibility sharing
among robots when there is an empty-set case, in order to
achieve a non-empty set of collision-avoiding velocities. A-
ORCA may end up with a new velocity that causes the robot
to temporally lose its target from the FoV, while ORCA may
simply stop and move at next time step without losing the
target.

Finally, in Scenario IV people cross each other, walk in
parallel and stay together without moving (see [1l]). No
collision occurred and the viewing ratios (empty-set ratios)
achieved by RVO, ORCA and A-ORCA are 0.96 (0.032),
0.98 (0.018) and 0.96 (0.017), respectively. The results are
consistent with those obtained with the synthetic trajecto-
ries when M = 10 (Fig.[5|c)).

5. Conclusion

We presented an ORCA-based framework for active vi-
sual tracking in multi-robot scenarios. We proposed a con-
troller that accounts for both viewing performance and mo-
tion smoothness. We improved ORCA with an adaptive
scheme to optimally set the pair-wise responsibility to re-
duce the empty-set cases under target intersecting scenarios.
This solution leads to longer target viewing.

As future work, we will include a target avoidance func-
tionality and validate the framework with real robots.
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