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Abstract

Distributed tracking in wireless smart-camera networks
is affected by varying local processing delays that gener-
ally depend on the current scene complexity. As a conse-
quence, each camera makes target information available to
the network at different time instants. These unknown de-
lays compound the drifts caused by local clocks and may in-
duce tracking failures when target information is fused. To
address this problem, we propose a distributed batch asyn-
chronous tracker for fully connected wireless smart-camera
networks. The cameras use the information filter to estimate
the target state information and to predict corresponding
information of other cameras based on the asynchronous
information received from them. Finally, the temporally
aligned information is fused. We show that the proposed
approach achieves higher tracking accuracy than the state
of the art under varying degrees of asynchronism.

1. Introduction
Tracking targets such as people and vehicles using a

wireless camera network (WCN) requires cameras to pro-
cess their captured frames to detect objects of interest. The
detections (measurements) may be noisy and the fusion
of local detection or tracking results across multiple cam-
eras aims to increase tracking accuracy. Fusion of syn-
chronous information increases tracking accuracy [9, 11].
However, when information is exchanged asynchronously,
the accuracy may degrade significantly [10]. Asynchronism
is caused by unknown relative clock offsets and processing
delays generated by the local computer-vision pipeline. The
former problem is due to the inherent drifts in the local
clock frequencies of the nodes [14], which result in cam-
eras capturing frames asynchronously. The latter problem
is due to the amount of data to be processed to obtain the
target measurements [12, 15, 5]. Moreover, the processing
delays may vary from frame to frame and from camera to
camera as they depend on the frame size, scene complexity,
processing capabilities of the nodes and the object detection
algorithms used [13].

In this paper, we propose a tracker that accounts for

asynchronism in fully connected WCNs. After every frame
capture, each camera performs two phases, namely esti-
mation and fusion. In the estimation phase, the camera
processes the frame data to obtain the measurement and
to estimate the target state using a Bayesian filter. The
camera then transmits its local target state information to
all the other cameras. If a camera receives a target state
from another camera, it stores the received information in
a buffer along with the reception time. After a time win-
dow around the frame capturing instant, the camera enters
the fusion phase. In the fusion phase, the camera pre-
dicts the target state information of other cameras corre-
sponding to its frame capturing instant using the informa-
tion received in the time window. The camera fuses the
temporally-aligned (i.e corresponding to the same time in-
stant) local and the predicted target information by comput-
ing the Kullback-Leibler Average (KLA) [2]. Finally, based
on the KLA estimates, the cameras correct their noisy mea-
surements. The software of the proposed method is avail-
able at http://www.eecs.qmul.ac.uk/~andrea/software.htm.

The paper is organised as follows. Section 2 discusses
the related work on distributed asynchronous tracking. Sec-
tion 3 formulates the asynchronous tracking problem. Sec-
tion 4 proposes an asynchronous fusion method and the cor-
responding filter for a linear Gaussian system. The exper-
imental performance evaluation is presented in Section 5.
Finally, Section 6 concludes the paper.

2. Related work
This section discusses related work on distributed asyn-

chronous tracking, which is summarised in Table 1.
Distributed asynchronous tracking can be performed us-

ing sequential [16] or batch methods [3]. With sequential
methods, the nodes compute the target state not only when
they have their own measurements but also when they re-
ceive target information from other nodes. The nodes do
not correct their own estimates corresponding to their frame
capturing instants using the information received from other
nodes. With batch methods, the nodes compute the target
state only when they have measurements and, during the
computation, they consider the information received from
other nodes as well. The number of target states computed
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Table 1: Related work on distributed asynchronous tracking.

Ref. Acronym Characteristics Fusion
methodconsiders

processing
delays

corrects
local
estimates

one time
exchange per
measurement

[16] SAF X Sequential[8] SAF-ED X X
[7] MCAF X Batch

(consensus)[10] ACAF X X
[3] ABM X X BatchThis paper BAF X X X

is one per measurement in the batch methods. In contrast,
the sequential methods compute every time they receive in-
formation from others so they have higher processing load
compared to batch methods [6].

The Sequential Asynchronous Filter (SAF) [16] does not
consider processing delays and the reception instant of the
information is assumed to be the frame capturing instant of
the sender. The SAF with estimated delays (SAF-ED) [8]
extends SAF to model and estimate the delays. When a
node receives state information from another node, it esti-
mates the delay and thereby the frame capturing instant cor-
responding to the received information. The node predicts
the local target information corresponding to the capturing
instant of the sender based on the previously known local
information. Finally, the temporally aligned information is
fused.

The Maximum Consensus-based Asynchronous Filter
(MCAF) updates the local estimates with the most certain
state among the local and received estimates [7]. As there is
no fusion, MCAF does not reduce the uncertainty of the es-
timates. The Average Consensus-based Asynchronous Fil-
ter (ACAF) [10] uses predictions to temporally align the in-
formation before fusion. With ACAF, nodes do not con-
sider the target information (of other cameras) received be-
fore capturing their frames. ACAF requires multiple iter-
ations of information exchange between captures to guar-
antee the reception after capturing. As consensus methods
process the information of all cameras together, we clas-
sify them as batch methods. In the Asynchronous Batch
Method (ABM) [3], each node assumes that processing and
transmission delays are negligible. However, due to the sig-
nificant delays in camera networks, the capturing instant of
the sender is different from the reception instant. This pa-
per proposes a batch method, the Batch Asynchronous Filter
(BAF), that considers processing delays during fusion.

3. Problem formulation

Let C =
{
C1, C2, ..., CN

}
be a fully connected WCN

with N calibrated cameras with local computation capabil-
ities that track a target on a common ground plane. We as-
sume that cameras communicate without packet losses and
communication delays. Let k be the index for the local time

of Ci when capturing a frame. Ci performs target detection
to obtain on the image plane measurement zik and τ ik is the
corresponding processing delay. We assume that the mea-
surements are noisy but not false (i.e. no false positive or
false negative detections).

Let the target state be xik =
[
xik y

i
k ẋ

i
k ẏ

i
k

]>
, where

[xik y
i
k]> and [ẋik ẏ

i
k]> are the position and velocity of the

target on the ground plane respectively, when the local time
of the camera Ci is k. Let αij be the relative offset in the
capturing instants of Ci and Cj . Our objective is to cor-
rect the noisy measurements z1:N

k by fusing the local target
state information of all the cameras in the presence of asyn-
chronous captures and varying processing delays.

4. Proposed approach
This section proposes a batch method to fuse asyn-

chronous information. The method can be applied to linear
or non-linear Gaussian systems by using an appropriate fil-
ter. It is followed by a filter implementation for linear and
Gaussian systems using the Information Filter [4].

4.1. Batch asynchronous fusion
In the estimation phase, each camera Ci processes the

frame captured at k to obtain the measurement zik and a lo-
cal Bayesian filter to compute the target probability density
function (pdf ) p(xi,ik |zi1:k) using the known pdf p(x̂ik′ |z1:N

1:k′)
corresponding to its previous frame capturing instant k′, the
state transition pdf p(xi,ik |x̂

i
k′) and the measurement likeli-

hood p(zik|x
i,i
k ). The subscript k indicates the local time of

the camera whose index is the first superscript. The second
superscript indicates the index of the camera the informa-
tion corresponds to. Each camera Ci completes its estima-
tion phase at k + τ ik. If the cameras capture synchronously,
the local pdf s p(xik|zi1:k),∀Ci ∈ C correspond to the same
time instant (at k). As the network is fully connected, each
camera Ci receives all the pdf s p(xjk|z

j
1:k),∀Cj ∈ C. In the

fusion phase, Ci fuses them by computing their KLA [2]

p(x̂ik|z1:N
1:k ) =

N∏
j=1

p(xj,jk |z
j
1:k)

1
N

∫ N∏
j=1

p(xj,jk |z
j
1:k)

1
N dx

, ∀Ci ∈ C, (1)

which is the same at all cameras.
In reality, the cameras capture asynchronously due to

the varying frame processing delays so the pdf s received
by each camera Ci might not correspond to its capturing
instant k. The proposed approach temporally aligns the
asynchronous local pdf s before computing their KLA. Each
camera Ci predicts the pdf of other cameras p(x̃i,jk |z

j
1:k),

∀Cj ∈ C\
{
Ci

}
corresponding to its frame capturing in-

stant k. There are two possible communication modes to
achieve this. The modes differ in the type of information



exchanged in the network. In the first mode, the cameras
exchange the predicted target pdf s corresponding to their
transmission instants k + τ ik. In the second mode, the cam-
eras exchange the estimated target pdf s corresponding to
their frame capturing instants k and also the local-delays
τ ik. The receiving cameras know the capturing instant of the
sender by subtracting the received delay from the reception
instant and the knowledge makes the cameras predict more
certain target pdf s of other cameras compared to the first
mode. Due to the additional transmission of local-delay
knowledge, the communication load is one scalar higher
compared to the previous mode. We therefore name the two
modes as lower load mode and higher load mode.

In the lower load mode, the predicted pdf to transmit
p(x̃i,i

k+τ ik
|zi1:k) is computed as

p(x̃i,i
k+τi

k

|zi1:k) =

∫
p(xi,i

k+τi
k

|xi,ik )p(xi,ik |z
i
1:k)dxi,ik . (2)

The predicted pdf represents the knowledge of Ci about the
target state corresponding to the transmission instant k +

τ i. Ci broadcasts the predicted pdf p(x̃i,i
k+τ ik
|zi1:k) to all

other cameras. Ci receives similar pdf s from other cameras.
Each camera Ci fuses the pdf s received in a time window
Ki
k = [k − α1, k + α2], (α1 > 0 and α2 > τ ik) around its

capturing instant k. Ci enters the fusion phase at the end of
the window (k + α2). Let k′′ ∈ Ki

k be a reception instant
of the pdf p(x̃j,j

k+τjk
|zj1:k) from Cj . Ci considers the pdf as

p(x̃i,jk′′ |z
j
1:k). Ci predicts the pdf of Cj corresponding to its

capturing instant k based on the received pdf p(x̃i,jk′′ |z
j
1:k) as

p(x̃i,jk |z
j
1:k) =

∫
p(xi,jk |x

i,j
k′′)p(x̃i,jk′′ |z

j
1:k)dx̃i,jk′′ . (3)

In the higher load mode, Ci broadcasts at k+τ ik its local
pdf p(xi,ik |zi1:k) and the delay τ ik to all other cameras. Ci re-
ceives similar information from other cameras. Ci consid-
ers the received pdf from Cj at k′′ ∈ Ki

k as p(xi,j
k′′−τjk

|zj1:k).

Ci predicts the pdf of Cj corresponding to its capturing in-
stant k based on the received pdf p(xi,j

k′′−τjk
|zj1:k) as

p(x̃i,jk |z
j
1:k) =

∫
p(xi,jk |x

i,j

k′′−τj
k

)p(xi,j
k′′−τj

k

|zj1:k)dxi,j
k′′−τj

k

. (4)

In both modes, Ci considers the predicted pdf
p(x̃i,jk |z

j
1:k) as the knowledge of Cj corresponding to the

capturing instant k of Ci. As the local pdf p(xi,ik |zi1:k)

and the predicted pdf s p(x̃i,jk |z
j
1:k),∀Cj ∈ C\

{
Ci

}
, corre-

spond to the same time instant (capturing instant k of Ci),
they are now temporally aligned. Ci now fuses the tempo-
rally aligned pdf s by computing their KLA [2] as

p(x̂ik|z1:N
1:k ) =

p(xi,ik |z
i
1:k)

1
N

N∏
j=1,j 6=i

p(x̃i,jk |z
j
1:k)

1
N

∫
p(xi,ik |zi1:k)

1
N

N∏
j=1,j 6=i

p(x̃i,jk |z
j
1:k)

1
N dx

. (5)

Figure 1: The timeline of the batch asynchronous fusion.
KEY – Ci: camera i, τ ik: delay of Ci to process its frame
captured at k, T = α1 + α2: inter-frame interval, Ki

k =
[k − α1, k + α2]: reception time window corresponding to
the frame capturing instant k of Ci.

To avoid fusing information from subsequent estimation
phases, subsequent captures must be well separated. To
achieve this, the cameras capture their next frames after
T = α1+α2. The higher the values of α1 and α2, the higher
the inter-frame interval (fewer captures), and the lower the
values of α1 and α2, the smaller the window Ki

k and the
information of some cameras is not considered for fusion.

In the case of partial asynchronism, where there is an up-
per limit on the relative offsets [7, 10], α1 = αmax − τmin
and α2 = αmax + τmax are the earliest and the latest
possible reception instants. Here, αmax = max

i,j
{αij} is

the maximum relative offset and τmax = max
i,k
{τ ik} and

τmin = min
i,k
{τ ik} are the maximum and minimum process-

ing delays, respectively. Figure 1 shows the timeline of the
proposed approach.

Finally, Ci computes the updated measurement ẑik of the
target using the KLA estimate p(x̂ik|z1:N

1:k ) and the known
camera measurement model.

4.2. Linear and Gaussian case
Based on the Batch asynchronous fusion described

above, we now derive the Batch Asynchronous Filter (BAF)
for linear and Gaussian systems using the Information Filter
(IF) [4] as the local Bayesian filter. Let the target follow a
linear motion model described as

xik+∆k = F(k, k + ∆k)xik + w(k, k + ∆k), (6)

where F(k, k+∆k) is the matrix describing the state transi-
tion from k to k+∆k and w(k, k+∆k) is the cumulative ef-
fect of the process noise from k to k+∆k, which is assumed
to be Gaussian noise with zero mean and covariance matrix
Q(k, k + ∆k). Let the measurement model of each camera
Ci be defined as zik = Hixik + vik, where vik is the measure-
ment noise vector, which is assumed to be Gaussian with



zero mean and covariance matrix Ri,∀Ci. In the estima-
tion phase of BAF, each camera Ci computes the target pdf
using the IF. The pdf is represented by the information pair(

yi,ik ,Y
i,i
k

)
containing the information vector yi,ik and the

information matrix Yi,ik . The IF uses the previously known

information pair
(

ŷik−T , Ŷ
i

k−T

)
and the current measure-

ment zik.
In the lower load mode, Ci predicts the target informa-

tion corresponding to the transmission instant k + τ ik as

Ỹi,ik+τi
k

= (F(k, k + τ ik)Yi,ik
−1F(k, k + τ ik)

>
+ Q(k, k + τ ik))−1,

ỹi,i
k+τi

k

= Ỹi,ik+τi
k

F(k, k + τ ik)
(

Yi,ik
−1yi,ik

)
,

(7)

and transmits the predicted information
(

ỹi,i
k+τ ik

, Ỹ
i,i

k+τ ik

)
to

all cameras at k + τ ik. Ci receives the information pair(
ỹj,j
k+τjk

, Ỹ
j,j

k+τjk

)
from Cj at k′′ ∈ Ki

k. Ci considers the

information as
(

ỹi,jk′′ , Ỹ
i,j

k′′

)
. In the fusion phase (at k+α2),

Ci predicts the information of Cj , ∀Cj ∈ C, corresponding
to its frame capturing instant k as

Ỹi,jk =
(

F(k′′, k)Ỹi,jk′′
−1

F(k′′, k)
>

+ Q(k′′, k)
)−1

,

ỹi,jk = Ỹi,jk F(k′′, k)
(

Ỹi,jk′′
−1

ỹi,jk′′
)
.

(8)

In the higher load mode, Ci transmits its local infor-
mation

(
yi,ik ,Y

i,i
k

)
and its local processing delay τ ik to all

cameras at k + τ ik without any prediction so that the other
cameras can know the actual estimate and the correspond-
ing capturing instant of Ci. Let k′′ ∈ Ki

k be the time in-
stant when Ci received the information pair

(
yj,jk ,Yj,jk

)
and τ jk from Cj . As we assume no communication delay,

Ci considers the information as
(

yi,j
k′′−τjk

,Yi,j
k′′−τjk

)
. In the

fusion phase (at k+α2), Ci predicts the information of Cj ,
∀Cj ∈ C, corresponding to its frame capturing instant k as

Ỹi,jk = (F(k′′ − τ jk , k)Yi,j
k′′−τj

k

−1F(k′′ − τ jk , k)
>

+ Q(k′′ − τ jk , k))−1,

ỹi,jk = Ỹi,jk F(k′′ − τ jk , k)

(
Yi,j
k′′−τj

k

−1yi,j
k′′−τj

k

)
.

(9)
In both modes, the KLA estimate of the Gaussian pdf s

can indeed be obtained by the average of the information
terms [2] so Ci computes the fused estimate as

Ŷ
i

k =
1

N

Yi,ik +

N∑
j=1,j 6=i

Ỹi,jk

 ,

ŷik =
1

N

yi,ik +

N∑
j=1,j 6=i

ỹi,jk

 .

(10)

Algorithm 1 The Batch Asynchronous Filter (BAF) run-
ning in camera Ci

Notations:
zik, ẑik : the collected and the corrected measurements ofCi corresponding to its local time k(

yi,j
k
,Yi,j
k

)
: local information pair ofCj corresponding to the local time k ofCi(

ỹi,j
k
, Ỹi,j
k

)
: predicted information pair ofCj corresponding to the local time k ofCi(

ŷik, Ŷik
)

: corrected information pair ofCi corresponding to its local time k (i.e. after fusion)

τik : processing delay ofCi corresponding to its frame captured at local time k
Kik : reception time window ofCi at k
T : inter-frame interval
Hi : State-to-measurement transition matrix ofCi

Input: ŷik−T , Ŷik−T , zik

Compute local information pair
(

yi,i
k
,Yi,i
k

)
using the information filter

Switch( Communication mode )
Case lower load :

Predict the information pair

(
ỹi,i
k+τi

k

, Ỹi,i
k+τi

k

)
Use (7)

Send

(
ỹi,i
k+τi

k

, Ỹi,i
k+τi

k

)
to ∀Cj ∈ C\

{
Ci
}

Receive
(

ỹi,j
k′′ , Ỹi,j

k′′
)

from ∀Cj ∈ C\
{
Ci
}
, k′′ ∈ Kik

Predict information pair ofCj
(

ỹi,j
k
, Ỹi,j
k

)
Use (8)

Case higher load :
Send

(
yi,i
k
,Yi,i
k
, τik

)
to ∀Cj ∈ C\

{
Ci
}

Receive

(
yi,j
k′′−τj

k

,Yi,j
k′′−τj

k

, τ
j
k

)
from ∀Cj ∈ C\

{
Ci
}
, k′′ ∈ Kik

Predict information pair ofCj
(

ỹi,j
k
, Ỹi,j
k

)
Use (9)

end Switch
Compute (̂yik, Ŷik) by information fusion Use (10)

Compute ẑik = HiŶik
−1

ŷik

Output: ŷik , Ŷik and ẑik

The local measurement zik is finally corrected as ẑik =

HiŶ
i

k

−1

ŷik. Algorithm 1 summarises the proposed Batch
Asynchronous Filter.

5. Results

5.1. Evaluation setup

We compare the proposed Batch Asynchronous Filter
that operates using lower communication load (BAF-1) and
using higher communication load (BAF-2) with five fil-
ters, namely the Asynchronous Batch Method (ABM) [3],
the Sequential Asynchronous Filter (SAF) [16], the Se-
quential Asynchronous Filter with estimated delays (SAF-
ED) [8], the Maximum Consensus-based Asynchronous
Filter (MCAF) [7], the Average Consensus-based Asyn-
chronous Filter (ACAF) [10] and the distributed filter with-
out fusion (No fusion). As MCAF and ACAF work only
with partial asynchronism, we also consider this case for a
fair comparison. We use the ground truth processing delay
knowledge for the estimated delays in SAF-ED.

We use the APIDIS dataset [1], which is captured with
N = 7 cameras whose positions and field of views (FoVs)
are known (Figure 2a). The camera network monitors a
30m × 20m basketball court. We consider the trajecto-
ries of P = 10 players whose ground-truth positions on
the ground plan are known for a duration of 1500 time steps



(a) Field of views (b) 10 ground plane trajectories

Figure 2: Illustration of the APIDIS dataset [1] setup in
terms of camera viewpoints and trajectories of players.

(Figure 2b). Each time step corresponds to 40ms. We sim-
ulate the asynchronous captures and processing delays by
skipping some frames. We define the state transition matrix
F(·) and the process noise covariance Q(·) as [8]

F(k, k + ∆k) =

[
I2 (∆k)I2

02 I2

]
,

Q(k, k + ∆k) = q2

[
d(∆k, 3)I2 d(∆k, 2)I2

d(∆k, 2)I2 d(∆k, 1)I2

]
,

(11)

where I2 and 02 are the 2 × 2 identity and zero matri-
ces respectively, d(∆k, n) = |∆k|n

n and q = 10 is the
noise intensity in the unit interval. Hi = [I2 02] and
Ri = 60I2,∀Ci. The random processing delays are τ ik ∈
U {0, τmax} , ∀Ci ∈ C. Similarly, the random relative off-
sets among cameras are: αij ∈ U {0, αmax} , ∀Ci, Cj ∈
C, i 6= j. We use a single iteration of information exchange
per measurement. We track each player using M = 20
Monte Carlo simulation runs. Each run uses a different set
of processing delays, relative offsets and measurements.

Let T i,r ⊂ [1, 1500] be the set of frame capturing in-
stants of Ci during the rth run and Pik ⊂ [1, P ] be the set
of players in the FoV of Ci at k. We define as performance
measure the average root mean square error (ε) of P play-
ers’ locations on the image planes of the cameras:

ε =

√√√√√ 1

MN

M∑
r=1

N∑
i=1

1

|T i,r|
∑

k∈T i,r

1

|Pik|
∑
p∈Pi

k

||ẑik(r, p)− ζik||22.

(12)
Here, ẑik(r, p) is the estimated location of player p in the
image plane of camera Ci at k during the rth run and ζik
is the corresponding image plane ground truth. We anal-
yse the error ε with increasing level of relative offset αmax

for two fixed maximum processing delays τmax = 0 (no
delay) and τmax = 3. We also analyse ε with increasing
level of processing delay τmax for two fixed maximum rel-
ative offsets αmax = 0 (synchronous case) and αmax = 6
(asynchronous case).

5.2. Discussion

With synchronism (αmax = 0) and without process-
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Figure 3: Average Root Mean Square tracking Error (ε)
with varying maximum relative offset αmax and maximum
processing delay τmax. One time step ≈ 40ms. The
algorithms under analysis are the proposed Batch Asyn-
chronous Filters (- - - -BAF-1 and —-BAF-2), the Asyn-
chronous Batch Method (- - - -ABM) [3], the Sequential
Asynchronous Filter (—–SAF) [16], the Sequential Asyn-
chronous Filter with estimated delays (—–SAF-ED) [8],
the Maximum Consensus-based Asynchronous Filter (—–
MCAF) [7], the Average Consensus-based Asynchronous
Filter (—–ACAF) [10] and the distributed filter that never
fuses (—–No fusion).

ing delays (τmax = 0), we can identify two groups with
similar performance: The group BAF-1, BAF-2, ACAF,
SAF and SAF-ED has higher accuracy than the group
MCAF and No fusion (Figures 3b and 3e).

With asynchronism (αmax > 0), BAF-2 outperforms
all other methods irrespective of the delays (Figures 3b, 3d
and 3f). Unlike BAF-1 and BAF-2, the sequential meth-
ods (SAF and SAF-ED) do not correct the estimates cor-
responding to the frame capturing instants using the de-
layed information. BAF-1 and BAF-2 outperform ACAF
and MCAF, because in ACAF the nodes do not consider the
information received before their frame capturing instants
and in MCAF nodes do not fuse the information but select
the most certain information that might correspond to a dif-
ferent time step.

With synchronism (αmax = 0) and with processing



delays (τmax > 0), BAF-1 and BAF-2 outperform all other
methods except SAF-ED (Figure 3e). This is because the
accuracy of the KLA estimate decreases if the uncertainty
of the pdf s increases. In BAF-1, the information of other
cameras undergoes two predictions thereby reducing the un-
certainty: the first by the sender Cj from its frame captur-
ing instant k to its transmission instant k + τ jk and second
by the receiver Ci from the reception instant k + τ jk to its
frame capturing instant k. In SAF-ED and BAF-2, based on
the known delay, the receiving node computes the capturing
instant of the sender. As all the capturing instants are the
same, the prediction does not affect the fusion. However,
the performance of SAF-ED depends on the correctness of
the estimated delays. Moreover, if a node has no target
observations, with ACAF and MCAF the node sends pre-
dicted target information, whereas in SAF, SAF-ED, BAF-1
and BAF-2, the node does not send any information so the
tracking accuracy of SAF, SAF-ED and BAF-1 and BAF-2
is not affected. In the case of delays (τmax > 0), it is bet-
ter to skip fusion instead of using MCAF (Figure 3b, 3d, 3e
and 3f). Note that the errors are upper-bounded by the error
with no fusion. If the captures are synchronous (αmax = 0),
ABM and BAF-2 outperform all others (Figure 3e). If the
captures are asynchronous (αmax > 0), ABM has the high-
est error among all methods, irrespective of the delays (Fig-
ures 3a, 3c, 3f).

BAF-2 is the best choice when the network is fully con-
nected. When the network is with limited connectivity,
ACAF is the best choice but ACAF discards the information
received prior to the frame capturing instant. To handle this
problem, in ACAF each node sends its information multiple
times between subsequent captures such that the neighbours
may receive the information after their frame capturing in-
stants. This increases the communication cost.

6. Conclusions

We proposed a batch method for asynchronous tracking
in fully connected wireless camera networks where each
camera predicts the target information of other cameras to
time-align it with its local information. The cameras con-
sider and process only the information received in time win-
dows around their local frame capturing instants. Impor-
tantly the proposed method considers the information re-
ceived both before and after its frame capturing instants.
Moreover, the proposed method corrects the local estimates
with respect to their frame capturing instants by fusing the
time-aligned information. The proposed tracking approach
outperforms state-of-the-art methods in terms of image-
plane error.

As future work, we will model the delays to aid predic-
tions and will validate the proposed approach with a physi-
cal smart-camera network.
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