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Networked Computer Vision:
the importance of a holistic simulator

Juan C. SanMiguel and Andrea Cavallaro

WiSE-Mnet++ is a holistic simulator that abstracts the key
functions of smart-camera networks and models the main oper-
ations to account for hardware capabilities, the complexities of

visual data, and their associated high-data-rate communication.
Index Terms—Visual sensor networks, smart cameras, simula-
tor, distributed, resource consumption.

I. INTRODUCTION

Smart-camera networks (SCNs) enable a range of services
for vehicular ad hoc networks, smart cities, home automation,
wide-area surveillance, and search-and-rescue operations. With
built-in processing and communication capabilities, these cam-
era networks generate large volumes of data, share high-data-
rate messages, and generally operate with limited resources.

The success of SCNs depends on the availability of simu-
lators that facilitate fast algorithmic prototyping and validate
performance objectives before deployment. Simulation tools
can help predict performance and provide feedback on the
models to be employed in real-world systems. Such tools
must account for the myriad of operational conditions and
heterogeneity of devices that compose a SCN. Although early
work on camera networks assumed infinite bandwidth or
cost-free data exchamg.;e,1 real-world SCNs must consider the
constraints imposed by resource-limited platforms. For exam-
ple, battery-powered cameras on self-driving vehicles must
wirelessly communicate with main-powered static cameras
to track pedestrians without exhausting their energy and the
available bandwidth.

Because cameras capture, process, and transmit much larger
volumes of data than traditional sensor networks, they present
unique design and operational challenges, which existing
simulators lack the necessary functionalities to evaluate. (See
the ”Camera-Network Simulators” sidebar for more details.)
Designing SCN simulators requires interdisciplinary expertise
covering algorithms, hardware, and networking in order to
model the camera hardware, identify appropriate resources,
and emulate communication protocols and channels?.

To address these challenges and simulate a range of appli-
cation scenarios, we developed the WiSE-Mnet++ simulator.
Our simulator models the key operations in smart cameras
(sensing, processing, communication, and decision making),
offers power-consumption models for smart-camera hardware,
and simulates realistic multicamera networks with both real-
world and synthetic datasets.
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Figure 1: The relation between the WiSE-Mnet++ camera-
network simulator, Castalia (http://castalia.forge.nicta.com.
au/) and OMNeT++ (http://omnetpp.org/).

The WiSE-Mnet++ open source simulator is available to
the research community at www.eecs.qmul.ac.uk/~andrea/
wise-mnet.html, along with supplementary material describ-
ing how to incorporate new simulation features and SCN
algorithms. The WiSE-Mnet++ simulator facilitates smart-
camera research by enabling users to activate or deactivate
each simulated feature. They can also easily compare solutions
for specific research problems, such as the impact of real
communication channels or limited computing capabilities on
performance.

In this article, we discuss the WiSEMnet++ simulator’s main
features and provide two examples that show its effective-
ness in profiling performance and energy consumption for
networked computer-vision applications.

II. CAMERA NODE

WiSE-Mnet++ provides generic, yet descriptive modeling
of the camera operations for sensing, processing, and com-
munication. As Figure [l illustrates, WiSE-Mnet++ extends
the WiSE-Mnet simulator®. and is based on the OMNeT++
(http://omnetpp.org/) and Castalia SN (http://castalia.forge.
nicta.com.au/) simulators.

A smart camera consists of layers that cover specific func-
tionalities (see Figure 2a)). A layer’s functionality can be easily
extended following an object-oriented scheme. The hardware
associated with each layer is also simulated to determine the
camera operational capabilities (such as processing frequency)
and resources (such as battery power).? A message-passing
structure enables interlayer communication.

A. Sensing

The WiseBaseSensor layer provides input data by measuring
the physical phenomena observed by the camera network. To
introduce new sensor functionalities, we can extend this layer
with sublayers, such as the WiseCameraManager, to control
the sensing and capturing parameters, including focal length.
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CAMERA-NETWORK SIMULATORS

Early simulators of camera networks focused primarily on the use of video datasets for multi-camera surveillance and sport games (http://datasets.
visionbib.com/). More comprehensive simulators were later proposed to account for communication and coordination with smart cameras. Table I
summarizes these simulators that can be classified as local or global.

Local simulators test a particular aspect of cameras. For example, the Object Video Virtual Tool (OVVT) [a] and the Software Laboratory for Camera
Network Research (SLCNR) [b] use virtual worlds to emulate the sensing of real-life scenarios. The Visual Sensor Network simulator (VSNSim) [ic]
also supports coordination and control, but lacks models for camera resources and communication channels thus making it difficult to implement
realistic coordination approaches. Moreover, extending the functionalities of these simulators is not straightforward as they are provided as bundled
packages. Finally, the CamSim simulator [d] defines protocols for communication between cameras, but without realistic communication models and
without real-world video data as input.

Global simulators focus on realistic camera networking by extending OMNeT++, a popular discrete-event simulator for Wireless Sensor Networks.
The Wireless Video Sensor Network (WVSN) simulator [€] determines the visual coverage of cameras over static 2D images, but without using video
streams or visual analytics. The Mobile MultiMedia Wireless Sensor Network (M3WSN) [f] simulator addresses multimedia transmission without
enabling collaborative processing. Although these simulators are extensible and can use communication protocols, they are mainly focused on 2D

measurements, without support for video data, visual tools or resource-consumption models for smart-camera platforms.
WiSE-Mnet++, our smart-camera network simulator, takes advantage of discrete-event simulation to address the above-mentioned shortcomings.

o . [ Camera | Sensing Processing [ Communication| Coordination | Resources [ .
’ ] NG ‘Type Callbrrtlom Mobility | Synthetic | Real [Scalable] Visual [ Ideal | Realistic | Topology [ Modes |C I inn{Allocation\EXtenSIble
[a] OVVT CS v v Y v SY
| bl SLCNR CS v v v SY v
(4] VSNSim CS \ v v SY
[d] CamSim DS MP v CG, VG SY v
E WVSN DS v MP 1 v v CG SY C S v
[ I M3WSN DS v MP 1 v CG SY C S v
Ours | WiSE-Mnet++ | DS v v VMP |LR,L v v v v CG,VG |AS, SY P D v

Table I: Simulators for smart-camera networks and their main features. Empty cells represent features not offered by the corresponding simulator.
KEY -- CS: Continuous simulation (real time). DS: Discrete Simulation. MP: Moving Points. V: Virtual video. R: Recorded video. L: Live video. CG:
Communication Graph. VG: Vision Graph. AS: Asynchronous. SY: Synchronous. C: Constant. P: Parametric. S: Static. D: Dynamic.
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The WiseBasePhysicalProcess layer defines the observ-
able phenomena (see Figure [3). The WiseVideoFile and Wi-
seVirtualCam extensions let us use video data from real-
world datasets and from virtual 3D worlds such as Unity
(unity3d.com). Moreover, we can model synthetic objects as
simple moving points on a common coordinate system (such
as ground plane or zenithal view) via the WiseMovingTarget
extensions. In this case, we model the directional sensing of
the field of view (FoV) on the ground plane as a 2D polygon
defined by the orientation, angle, and depth of the camera
view.

Unlike Pan-Tilt-Zoom smart cameras that consider only
dynamic FoVs, the WiseBaseMobility enables to spatially
move cameras by simulating the physical motion of their
location that is typical of vision-based robotic applications.®

B. Processing

The processing of video streams is pivotal for decision
making and WiSE-Mnet++ defines a hierarchy of modules
to coordinate the execution of the camera operations. The
WiseBaseApplication layer is the interface with the network

and provides basic capabilities to exchange data via the Wise-
BaseComm layer. The WiseCameraAlgorithm layer extends
WiseBaseApplication with functions running at initialization
and others called periodically for receiving new data. These
functions also define a finite-state-machine that sequentially
performs the three main camera operations for each sensed
sample (e.g. a video frame). OMNeT++ timers are used to
specify response times of the processing capabilities and to
control the frequency when collecting data from WiseBaseSen-
sor. Moreover, the sub-layer WiseCameraPeriodicTracker pro-
vides a ready-to-use functionality for target tracking. Finally,
user applications are implemented by extending WiseCamer-
aAlgorithm or WiseCameraPeriodicTracker with custom video
analysis tools or third party libraries such as OpenCV.

C. Communication

Unsynchronized and instantaneous inter-camera communi-
cation is enabled by toNodeDirect gates defined inside each
WiseNode camera. This direct communication is useful for
testing algorithms without considering the network. The com-
munication protocols and channels are implemented in the
WiseBaseComm layer, which considers both ideal and realistic


http://datasets.visionbib.com/
http://datasets.visionbib.com/
http://development.objectvideo.com/
https://github.com/vclab/virtual-vision-simulator
https://github.com/EPiCS/CamSim
http://cpham.perso.univ-pau.fr/WSN-MODEL/wvsn.html
http://home.inf.unibe.ch/~zhao/M3WSN/

IEEE COMPUTER

v i
o | WiseBaseResource [(h------=-=---=-=
| A |
i v ! ; p
' Toffrom
From . ] - . : . [=\irad or Wirel
physicas —»  WiseBaseSensor > ‘WiseBaseApplication i WiseBaseComm ‘red?arnn;r‘e i
__phenomena i 1 (communication)
(WiseBasePhysicalProcess) i
v !
WiseBaseMobility ---
(a)
WiseNode
WiseBasePhysicalProcess [(——» WiseNode o E— Communication Channel

video streams, video files,
data streams from 3D virtual
worlds, synthetic 2D targets

v

T

Wired/Wireless

e

WiseNode

(b)

Figure 2: Layered WiSE-Mnet++ simulation for smart-camera networks. (a) A smart-camera node (WiseNode). Sens-

ing, processing and communication capabilities are handled

by the WiseBaseSensor, WiseBaseApplication and

WiseBaseCommn layers, respectively. The WiseBaseMobility changes the camera location and the WiseBaseResource
monitors the employed resources. (b) Within an SCN, WiseNode cameras are interconnected via wired-wireless channels or

direct (instantaneous) message passing.

Figure 3: The three sensing options available in WiSEMnet++:
(a) real-world video input or pre-recorded sequences (PETS
2009 dataset http://www.cvg.reading.ac.uk/PETS2009/); (b)
streams from virtual 3D worlds; and (c) 2D synthetic data.

communication modes for data exchange. Buffer structures are
defined to store the received data.

The ideal communication is an idealization of wired com-
munications that helps develop collaborative algorithms while
avoiding network- and transceiver-related problems when ex-

changing data, such as collisions resulting from multiple
cameras simultaneously transmitting. The WiseDummyWire-
lessChannel layer bypasses the communication protocol stack
and enables a synchronized connectivity among cameras. The
simulator also provides ideal communication conditions with
instantaneous data exchanges without any packet losses or
interferences.

The Castalia simulator provides the realistic communica-
tion. Castalia defines transceiver models (radio), advanced
channel models (WirelessChannel), and routing protocols for
wireless sensor networks implemented in the VirtualMac layer.
Realistic conditions should account for multiple factors such
as the transceiver (radio) models, the communication protocol
(such as MAC), interference and attenuation of the wireless
channel, and the latencies of the camera modules.

D. Resource management

The WiseBaseResource layer models the resources and
consumption associated to camera hardware, which is key
for resource-aware camera networks.® This layer also reports
usage statistics to WiseBaseApplication for further reasoning.
For example, a camera may re-allocate a task to other cameras
to extend its lifetime.

WiSE-Mnet++ provides capability descriptors to model
common hardware features, such as frame rate and frame size
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for sensing, memory and operating frequency for processing,
and available bandwidth and power modes for communication.
The WiseBaseResource layer loads these descriptors when
initializing the simulation. We can incorporate new hardware
features by extending this layer.

To model energy consumption, each camera layer operates
with a three-state model.” A specific state (active, sleep, or
idle) can be selected on demand (such as when the processor
is asked to complete a task) or via designer-defined rules
(such as by forcing a camera to sleep after a certain period of
idleness). We approximate the power of the active state using
an N-order polynomial model that accommodates existing
nonlinearities between resource usage and consumption. We
model the power for the sleep and idle states as constants.

III. CAMERA NETWORK

Networked computer vision involves several cameras com-
municating with each other via single or multiple hops. WiSE-
Mnet++ identifies the intercamera links to enable the control
of such networks (see Figure [2b).

A. Network topology

WiSE-Mnet++ describes the network topology based on
two types of neighborhood connectivity: vision and commu-
nication. The vision neighborhood defines cameras that share
a portion of their FoV. The communication neighborhood
determines cameras that can exchange messages with a single-
hop communication. This neighborhood information can be
manually introduced or automatically discovered.

The WiseCameraAlgorithm layer can automatically com-
pute the vision connectivity using external camera calibra-
tion data (that is, the camera location and orientation on
a common coordinate system such as the ground plane).
The automatic discovery of communication connectivity relies
on an iterative send-and-receive protocol performed in the
WiseBaseApplication layer. However, researchers can easily
add more complex online approaches (such as task exchange
patterns®) to discover and adapt the knowledge of the network
topology during runtime.

B. Collaboration modes

The WiseCameraAlgorithm template supports two operation
modes - asynchronous and synchronous - that can be selected
in the initialization phase.

Asynchronous duty-cycled camera networks allow faster
response times. In this case, cameras are always ready to
collaborate, and camera operations are not temporally coor-
dinated. Hence, sensing acquires frames at a desired frame
rate, and the communication layer continuously listens to the
channel for incoming data. Buffers are used for both sensing
and communication as the data sensed or received could be
processed with a delay. Processing is triggered when any of
the buffers contains data.

In the synchronous mode, cameras iteratively perform se-
quential sensing, processing, and communication. No buffering
is required because each operation starts after the previous

one finishes. The execution pipeline’s speed is therefore de-
termined by its slowest operation, which potentially limits the
responsiveness of the entire SCN during collaboration.

IV. CASE STUDIES

We illustrate the advantages of WiseMNet++ using two
important SCN applications: person reidentification and dis-
tributed tracking. For the smart camera hardware, we used an
ARM-A9 processor (0.5-1.5 GHz), a B3 image sensor (10-24
MHz), and a C2420 radio (250 Kbps).” The simulations were
performed on a PIV-3.1 GHz with 4 Gbytes of RAM.

A. People descriptors (in-node processing)

We can begin by profiling the energy consumption of a
detect-describe-transmit task for person reidentification.” In
doing so, we vary the sensing frame rate and the processing
clock frequency. Each camera detects people within its FoV
and generates visual descriptors of their appearance. For each
frame, people are described by a vector including synchroniza-
tion data (timestamp), the number of detections, normalized
RGB histograms (three channels, 16 bins/channel, and 256
levels/bin), and spatial descriptors (center coordinates and the
bounding box’s width and height). Each detection generates a
6,600-bit packet, which is compressed using Huffman encod-
ing. We customized the WiseCameraApplication sublayer to
implement the described functionality, and the camera employs
video files using the WiseVideoFile extension.

Figure 2 reports the results for the
AVSS07_AB_evalsequence (www.avss2007.org). Figure Hp
shows the energy consumption of the communication layer
as a function of the camera hardware capabilities. High
frame rates and high processor speeds lead to an energy
consumption that is only one order of magnitude smaller than
that of processing. Moreover, Figure @p and Figure @ show
the energy consumption rate for the processing module’s
active and idle states. The energy required for processing
depends on both the frame rate and clock frequency. When
we combine the idle and active states, the consumption
ranges from 25 mW (0.25 GHz) to 870 mW (1.5 GHz). As
we increase the clock frequency, frames are processed faster
and the associated cost increases. The idle state’s energy
is only relevant when the processor is not loaded (1-5 fps)
and operates at high frequencies (0.75-1.5GHz), which is
comparable to the active energy. This is interesting because it
shows that, despite current assumptions, the idle power must
be considered when measuring power consumption.

B. Distributed tracking (in-network processing)

For our second case study, consider a distributed fusion task
with cameras exchanging data without the coordination of a
task leader. Here, we use a wireless camera network with eight
cameras that cover a 500m x 500m area. The cameras obtain
measurements at 4 Hz (that is, a sampling time of 0.25 s) and
have a communication range of 250 m. Each target moves for
40 s.

We can apply a consensus-based approach to distributively
achieve an average quantity among the network nodes. In
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Figure 4: Energy consumption of the detect-describe-transmit task for the (a) communication module; (b) processing module
(active state) and (c) processing module (idle state). Note that for high processor clocks and low frame rates the consumption

of the idle and active states are comparable.

such an iterative scheme, the nodes reach a consensus by
sharing the data and then computing the mean of the received
quantities. We perform consensus-based single- and multiple-
target tracking (MTT) and measure the accuracy, energy
consumption, and delay associated with processing in ideal
and realistic network conditions over 200 independent runs.
We adapt the WiseCameraPeriodicTracker sublayer to perform
consensus and use the WiseMovingTarget extension to sense
moving targets within the FoV of cameras.

For single-target tracking, we compare two consensus-based
approaches: the Kalman-consensus filter (KCF)!" and the
information-consensus filter (ICF).'! Each camera runs a KCF
or ICF, and the output is broadcast to all neighboring cameras,
which apply consensus to estimate the target state (such as its
position on the ground plane).

Under ideal network conditions, as expected, the tracking
error decreases when increasing number of iterations as the

estimation error of each camera is diffused over the other
cameras (see Figure Sh). KCF performs a blind average of
the target state and therefore accumulates errors of cameras
far away from the target. ICF outperforms KCF by sharing
prior information about the absence of measurements when
the targets are outside the cameras’ FoV.

Under realistic conditions, the tracking error for ICF and
KCF does not decrease when the number of iterations in-
creases (see Figure [5p). This is due to the accumulated delay
for the iterations, because packet transmission and reception
do not occur instantly, even for the small packets of ICF (36
bytes) and KCF (18 bytes).

Under ideal conditions, ICF’s improvement comes at an
extra cost in terms of processing and communication. ICF
requires more than twice the energy of KCF for all iterations
(see Figure [5). Note that although research on smart cameras
has traditionally considered communication costs negligible
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Figure 5: Consensus-based distributed tracking in a single-
target tracking network using a Kalman-consensus filter (KCF)
and an information-consensus filter (ICF): (a) ideal and (b)
realistic wireless communication channels. The error decrease
visible under ideal conditions is not maintained under realistic
networks because of processing and transmission delays. (c)
The average energy consumption for all cameras reveals that
communication costs are not always negligible.

compared with that of processing, Figure St shows equal costs
for KCF, whereas for ICF the cost of communication is greater
than that of processing.

For multi-target tracking (MTT), we analyze the MTIC
filter'? , which extends ICF to multiple targets. Network
parameters, such as the MAC synchronization window, are
configured to the setting that provides the fastest communica-
tion without error, which depends on the maximum number
of targets (12) for the test conditions. With WiSE-Mnet++ we
can explore two key factors affecting the MTT performance:
measurements with clutter and network delay.

Figure [6h shows the tracking error for MTIC for various
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Figure 6: Consensus-based distributed tracking in a multiple-
target tracking network. Our analysis of the MTIC filter
reveals that (a) the tracking error depends on the delay in real
networks and (b) for two targets and six iterations, the delay
in processing one sample exceeds the sampling rate (0.25 s).

clutter levels in ideal and realistic communication conditions.
As the number of targets grows, it takes longer to exchange
target states, thus producing a delay that increases the tracking
error ( Figure [6b). After the sixth iteration for two targets,
the accumulated delay is greater than 0.25 s (the sampling
frequency) and therefore cameras miss target measurements.
This latency in processing the samples increases the final
error of the estimation, regardless of the number of consensus
iterations. Considering Figures [6h and [6p, MTIC is more
affected by network delays than by clutter, a comparison that
is not usually performed when reporting tracking results.'?

V. CONCLUSIONS

WiSE-Mnet++ offers tools that help identify shortcomings
and bottlenecks when designing or adopting algorithms for
real SCNs so they can be identified before deployment. It is
extensible and flexible, and readily allows users to incorporate
new features at the algorithm, network, and hardware levels.
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Future work will focus on complementing WiSE-Mnet++ with
simulation environments that extend the range of available
testing scenarios for distributed computer vision algorithms.
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