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Microphone-array ego-noise reduction algorithms
for auditory micro aerial vehicles

Lin Wang, Andrea Cavallaro

Abstract—When a micro aerial vehicle (MAV) captures sounds
emitted by a ground or aerial source, its motors and propellers
are much closer to the microphone(s) than the sound source,
thus leading to extremely low signal-to-noise ratios (SNR),
e.g. -15 dB. While microphone-array techniques have been
investigated intensively, their application to MAV-based ego-noise
reduction has been rarely reported in the literature. To fill this
gap, we implement and compare three types of microphone-
array algorithms to enhance the target sound captured by an
MAV. These algorithms include a recently emerged technique,
time-frequency spatial filtering, and two well-known techniques,
beamforming and blind source separation. In particular, based
on the observation that the target sound and the ego-noise
usually have concentrated energy at sparsely isolated time-
frequency bins, we propose to use the time-frequency processing
approach, which formulates a spatial filter that can enhance a
target direction based on local direction of arrival estimates at
individual time-frequency bins. By exploiting the time-frequency
sparsity of the acoustic signal, this spatial filter works robustly
for sound enhancement in the presence of strong ego-noise. We
analyze in details the three techniques and conduct a comparative
evaluation with real-recorded MAV sounds. Experimental results
show the superiority of blind source separation and time-
frequency filtering in low-SNR scenarios.

Index Terms—Acoustic sensing, ego-noise reduction, micro
aerial vehicles, microphone array

I. INTRODUCTION

With the ability of hovering above the terrain and moving
in 3D, multi-rotor micro aerial vehicles (MAV) are an ideal
mobile sensing platform that can be equipped with cameras,
laser scanners, ultrasonic radars and microphones [1]. While
visual sensing has already attracted considerable attention
for search and rescue operations, personal and professional
video capturing [2]–[6], acoustic sensing using microphones
mounted on the MAV is a new and emerging topic. When
deploying MAVs in search and rescue operations, acoustic
sensing is desirable in order to detect sound-emitting targets
especially with low visibility or visual obstacles (e.g. in case
of a victim underneath debris) [7]–[12]. Moreover, MAVs for
multimedia broadcasting could stream both audio and video
signals to remote terminals [13], [14].

The main obstacle for effective MAV-based acoustic sens-
ing is the strong ego-noise generated by motors and pro-
pellers [15], which masks the target sounds and degrades the
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recorded signal significantly [16]. Microphone-array ego-noise
reduction techniques are needed to enhance the target sound.
Since the motors and propellers are closer to the microphones
than the target sound source, an MAV sound recording usually
presents an extremely low signal-to-noise ratio (SNR), which
considerably degrades the performance of most microphone-
array signal processing algorithms. The spectrum of this
nonstationary ego-noise depends on the rotation speed of each
motor, which changes over time. Moreover, the microphones
move with the MAV thus leading to a dynamic acoustic mixing
network. Finally, natural and motion-induced wind increases
the noise components captured by the microphones.

While microphone-array techniques have been investigated
intensively in the last decades [17]–[20], most algorithms
were developed for indoor speech processing. Moreover, the
application to extremely low-SNR scenarios (e.g. ≤-15 dB)
has been rarely reported [21], [22]. In addition to this, only a
few works have specifically addressed the challenging MAV-
based ego-noise problem [13], [16], [23]–[27]. These works
can be categorized as supervised and unsupervised approaches.

Supervised approaches need additional sensors to estimate
or to predict the ego-noise. Two types of supervised methods
have been proposed for ego-noise reduction, namely template-
based [23] and reference-based [13], [26], [27]. Template-
based methods build a noise template database from which the
spectrum [23] or the correlation matrix [28] of the ego-noise
can be estimated corresponding to the motor rotation speed
and the MAV behaviour. The estimated ego-noise information
can be used to design single-channel spectral filters [23] or
multichannel adaptive beamformer [29], [30] for ego-noise
reduction, and can also be applied to noise-robust source
localization [28]. To avoid using monitoring sensors, non-
negative matrix factorization can be employed to learn noise
bases from pre-recorded training data and then to estimate the
noise spectrum online from the noisy recording. While this
approach has already been applied to ground robots [31], [32],
its performance for MAV ego-noise, which is nonstationary
and stronger, has not been reported yet. Reference-based
methods use reference microphones installed close to the
propellers to pick up motor noises and then cancel them out
with an adaptive filter [13], [26], [27]. Insulation materials are
necessary to prevent the reference microphones from picking
up the target sound. Overall, the need for dedicated monitoring
sensors limits the versatility of supervised approaches.

Unsupervised approaches perform ego-noise reduction us-
ing only the signals captured by the microphones. To date,
only two types of unsupervised approaches have been applied
to MAVs, namely fixed beamforming [24], [25] and blind
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source separation [16]. Delay-and-sum (fixed) beamforming
enhances the sound from a desired location by coherently
delaying and summing multichannel microphone signals.
Fixed beamforming relies only on the array geometry and the
target sound location, and is robust to low SNRs and MAV
movement. However, to obtain satisfactory noise reduction
performance, this approach usually requires a large-size array,
e.g. 16 microphones in an octagonal array with a diameter of
around 2 m [24], [25]. Blind source separation (BSS) recovers
unknown source signals from the observed mixture by blindly
estimating a demixing network [33]. BSS suppresses the ego-
noise without knowing the locations of the microphones and
the target sound source [16]. However, the performance of
BSS degrades in a dynamic scenario with a moving MAV.

To fill the gap between the extensive work in microphone-
array signal processing and the new applications to MAVs,
after introducing the problem formulation in Section II, we
present in Section III three types of unsupervised microphone-
array algorithms that can be used for ego-noise reduction:
time-frequency spatial filtering (a recently emerged technique),
beamforming and blind source separation. The time-frequency
processing approach was originally proposed for indoor speech
processing, which formulates a spatial filter by exploiting the
time-frequency sparsity of speech signals [34], [35]. Based on
the observation that the captured acoustic signals usually have
sparsely concentrated energy in the time-frequency domain,
we propose to apply this technique to MAV-based sound
processing. Moreover, we build a hardware prototype to test
and compare the algorithms, as discussed in Section IV.
Finally, Section V draws conclusions.

II. PROBLEM FORMULATION

Let a circular array with M microphones mounted on
a multi-rotor MAV capture the sound emitted by a target
source (Fig. 1(a)). The locations of the microphones in a
2D coordinate system, as shown in Fig. 1(b), are R =
[r1, · · · , rM ], where rm = [rmx, rmy]

T is the location of
the m-th microphone and the superscript (·)T denotes the
transpose. The target sound source is in the far field and emits
sound with direction of arrival (DOA) θd. The microphone
signal, x(n) = [x1(n), · · · , xM (n)]T, contains both the target
sound, s(n) = [s1(n), · · · , sM (n)]T, and the ego-noise,
v(n) = [v1(n), · · · , vM (n)]T, i.e.

x(n) = s(n) + v(n), (1)

or, written in the short-time Fourier transform (STFT) domain:

x(k, l) = s(k, l) + v(k, l), (2)

where k and l are the frequency and frame indices, respec-
tively. Let K and L be the total number of frequency bins
and time frames, respectively.

Given x(n), R and θd, we aim to design a spatial filter
w(k, l) = [w1(k, l), · · · , wM (k, l)]T that extracts the target
sound from the noisy recording via

y(k, l) = wH(k, l)x(k, l), (3)

where the superscript (·)H denotes the Hermitian transpose.
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Fig. 1. (a) A hovering multi-rotor MAV with a microphone array capturing
a target sound. (b) Geometrical configuration for microphone-array signal
processing. (c) Time-frequency spectrum of the ego-noise recorded from
an operational MAV. The ego-noise consists of harmonic components and
broadband noise. (d) Time-frequency spectrum of the noisy recording
composed of ego-noise and a target sound (speech), which occurs during
5-15 s with SNR -15 dB. The target sound is almost fully masked by the
background noise.

Fig. 1(c) shows an example of the ego-noise recorded
from an operational MAV. The ego-noise consists mainly of
narrow-band harmonic components and broadband noise. The
harmonic noise is the mechanical sound generated by the
rotating motors, with energy peaks at isolated frequency bins.
The braodband noise is generated by the rotating propellers
cutting the air, with its energy spreading uniformly throughout
the frequency spectrum. The fundamental frequency (pitch)
of the harmonics usually varies with the motor rotation
speed [23], leading to nonstationarity of the ego-noise. For
instance, the ego-noise shown in Fig. 1(c) was produced
when the motor speed increased monotonically in the first
7.5 s (seconds), then remained stable during 7.5-15 s, and
finally decreased in the last 6 s. The pitch of the harmonics
varies similarly to the motor speed. We modelled the ego-noise
in [16] as the sum of multiple directional point-source noises,
which show high correlation at harmonic frequencies, plus one
diffuse noise, which shows low correlation at high frequencies
but high correlation at low frequencies. Microphone-array
techniques, which exploit the correlation of the acoustic signal
among microphones, are thus suitable to address this ego-
noise reduction problem. Fig. 1(d) shows an example of noisy
recording with a target sound (speech) present during 5-15 s
with SNR -15 dB. Comparing Fig. 1(c) and Fig. 1(d), only
minor differences can be observed as the target sound is
masked by the background noise and is almost invisible.
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In the following section we discuss microphone-array
algorithms that are appropriate for MAV-based noise reduc-
tion, assuming that the MAV hovers stably while recording
the sound from a static source (i.e. the locations of the
microphones and the sound source are fixed). We assume a
low-reverberant environment, as MAVs are mainly deployed
outdoors, and we do not take into account the noise produced
by natural wind.

III. MICROPHONE-ARRAY ALGORITHMS FOR MAVS

A. Beamforming

Beamforming is a widely used microphone-array technique
for directional sound acquisition [17]. A fixed beamformer
enhances the sound from a specific direction by coherently
delaying and summing the signals from multiple microphones
based on the transmitting delays from the sound source to the
microphones:

yBF(k, l, θd) =
1

M

M∑
m=1

x(k, l)ej2πfkτ(1,m,θd), (4)

where fk denotes the frequency at the k-th bin,
τ(m1,m2, θd) =

‖rm2
−rθd‖−‖rm1

−rθd‖
c is the delay

between two microphones m1 and m2 with respect to the
sound coming from θd, rθd is the location of the far-field
sound source with DOA θd, and c is the velocity of sound.
The performance of a fixed beamformer is mainly determined
by the geometrical configuration of the array and the sound
source (i.e. R and θd), and usually is not related to the
acoustic signals received by the microphones.

Adaptive beamformers analyze statistical characteristics of
the microphone signal to enhance the target sound without
knowing the locations of the microphones and the target sound
source. Adaptive beamformers suppress noise more efficiently
than (delay-and-sum) fixed beamformers. Several criteria
can be applied in the design of an adaptive beamformer,
such as minimum variance distortionless response (MVDR),
maximum speech-to-noise ratio (MaxSNR), and multichannel
Wiener filter (MWF) [36]–[38]. These adaptive beamformers
typically require the knowledge of the correlation matrix of
the target sound or of the noise signal. The microphone signal
in the time-frequency domain x(k, l) = s(k, l) + v(k, l), the
correlation matrices of the microphone signal Φxx(k, l), the
target signal Φss(k, l), and the noise signal Φvv(k, l) are,
respectively, defined as

Φxx(k, l) = E{x(k, l)xH(k, l)}, (5)
Φss(k, l) = E{s(k, l)sH(k, l)}, (6)
Φvv(k, l) = E{v(k, l)vH(k, l)}, (7)

where E{·} denotes the mathematical expectation. Assuming
that the target and the noise signals are statistically indepen-
dent, it follows that

Φxx(k, l) = Φss(k, l) +Φvv(k, l). (8)

If the correlation matrices in (8) are known, the adaptive
beamformer can be formulated easily. For instance, applying

generalized eigen-vector decomposition (GEVD) to a matrix
pair (Φxx(k, l), Φvv(k, l)), it follows that [38]

Φxx(k, l)E(k, l) = Φvv(k, l)E(k, l)Λ(k, l), (9)

where Λ(k, l) is a diagonal matrix containing M general-
ized eigen-values λ1(k, l) ≥ · · · ≥ λM (k, l), E(k, l) =
[e1(k, l), · · · , eM (k, l)] consists of M generalized eigen-
vectors corresponding to λ1(k, l), · · · , λM (k, l), respectively.
The MaxSNR beamformer is defined as the generalized eigen-
vector corresponding to the largest eigen-value, i.e.

wMaxSNR(k, l) = e1(k, l), (10)

with the output being

yMaxSNR(k, l) = w
H
MaxSNR(k, l)x(k, l). (11)

A crucial problem in adaptive beamformer design is the
estimation of the correlation matrices.

The correlation matrix of the microphone signal, as defined
in (5), can be estimated directly by using

Φxx(k, l) =
1

L

L∑
l=1

x(k, l)xH(k, l). (12)

Estimating the correlation matrix of the MAV ego-noise is
a challenging task. If the noise signal is known for the whole
duration of the signal, the noise correlation matrix, as defined
in (7), can be estimated similarly to (12), i.e.

ΦIdeal
vv (k, l) =

1

L

L∑
l=1

v(k, l)vH(k, l). (13)

This scheme works only in an ideal situation. An alternative
scheme is to estimate the noise correlation matrix using the
microphone signal in noise-only periods Lv , i.e.

Φvad
vv(k, l) =

1

Lv

∑
l∈Lv

x(k, l)xH(k, l), (14)

where Lv is the total number of frames in Lv . This scheme
is widely used in speech processing [38] but not suitable for
MAV sound recording because it is difficult to find a voice
activity detector (VAD) that can reliably detect the noise-only
period especially when the ego-noise is nonstationary and the
SNR is extremely low.

Two other ego-noise correlation matrix estimation schemes
were proposed in the works which applied the GEVD-
MUSIC (MUltiple SIgnal Classification) algorithm to MAV-
based source localization [7], [28], [39]. The first scheme
simply uses an identity matrix as the estimate of the noise
correlation matrix [28], i.e.

Φidentity
vv (k, l) = IM , (15)

where IM denotes an M ×M identity matrix. This scheme
assumes the noise signals received at multiple microphones
to be uncorrelated with each other, which is not the case for
MAV ego-noise. The second scheme incrementally estimates
the noise correlation matrix, assuming that the LT frames
preceding the current frame contain only noise [7], [39], i.e.

Φinc
vv(k, l) =

1

LT

l−1∑
l′=l−LT

x(k, l′)xH(k, l′). (16)
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Obviously, this assumption does not stand when the previous
LT frames contain the target sound signal.

B. Blind source separation (BSS)

BSS performs sound enhancement by treating the target
and noise signals equally and by separating all the individual
sources from the mixed signals captured by the array of
microphones [33]. The application of BSS to MAV-based
ego-noise reduction is straightforward as the locations of the
microphones and the target source are not needed [16].

BSS consists of two key components: independent com-
ponent analysis (ICA) and permutation alignment [41]. ICA,
which is applied per frequency bin, exploits the statistical
independence between source signals to estimate a demixing
matrix [42]. This demixing matrix can be interpreted as the
inverse of the acoustic mixing network and can recover the
source signals up to permutation ambiguities: each source
can be extracted individually from the observed mixture but
with a random order in the output channels. A subsequent
permutation alignment procedure is needed to group the
individual signals that belong to the same source so that
the separated frequency-domain signals can be correctly
transformed back to the time domain [40], [41].

Since we have M microphones, we apply an M × M
ICA directly to the M -channel input, assuming an M ×M
mixing network with M independent sources, i.e. a target
sound source component s̃ and M ′ = M − 1 unknown ego-
noise components ṽ1, · · · , ṽM ′ . The M -channel microphone
input can thus be written in the time-frequency domain as

x(k, l) =H(k, l)u(k, l), (17)

where u(k, l) = [s̃(k, l), ṽ1(k, l), · · · , ṽM ′(k, l)]T is a vector
containing the M sources, and H(k, l) is the M ×M mixing
matrix between the M sources and M microphones.

After ICA and permutation alignment, we represent the
obtained demixing matrix as W BSS(k, l), which approximates
the inverse of the demixing matrix, i.e. W BSS(k, l) ≈
H−1(k, l). The demixed signal is obtained as

yBSS(k, l) =W BSS(k, l)x(k, l) ≈ u(k, l), (18)

where yBSS(k, l) = [y1(k, l), · · · , yM (k, l)]T is a vector of M
elements, one of which is the target sound.

C. Time-frequency processing

Time-frequency (T-F) processing has emerged recently
as a class of approaches that exploit the time-frequency
sparsity of audio signals [34], [35]. These approaches estimate
the DOA of the sound at each time-frequency bin and
then combine the localization results from individual time-
frequency bins for noise reduction. While the idea of local
DOA-based spatial filtering was originally proposed for
indoor speech processing [34], it is also suitable for MAV
sound processing as the harmonic components of the ego-
noise have concentrated energy peaks at isolated harmonic
frequencies [16]. Likewise, target sounds such as human
speech or emergency whistles also consist mainly of harmonic
components.

Given the microphone signal x(k, l) and location of the
microphones R, the DOA of the sound at each time-
frequency bin can be estimated by building a spatial likelihood
function [34]

γTF(k, l, θ) =

R


M∑

m1,m2=1
m1 6=m2

xm1
(k, l)x∗m2

(k, l)

|xm1
(k, l)xm2

(k, l)|
ej2πfkτ(m1,m2,θ)

, (19)

where the superscript (·)∗ denotes complex conjugation, the
operator R{·} denotes the real component of the argument,
and τ(m1,m2, θ) =

‖rm2
−rθ‖−‖rm1

−rθ‖
c is defined as in (4).

The term ej2πfkτ(m1,m2,θ) is the inter-channel phase dif-
ference theoretically computed with the delay τ ; the term
xm1 (k,l)x

∗
m2

(k,l)

|xm1 (k,l)xm2 (k,l)|
is the inter-channel phase difference mea-

sured from xm1 and xm2 . The spatial likelihood γTF is high
when these two inter-channel phase differences are consistent
with each other. The DOA can thus be estimated as

θTF(k, l) = argmax
θ∈(−180◦,180◦]

γTF(k, l, θ). (20)

The localization results at individual time-frequency bins
can be used to construct a spatially informed filter, which
extracts the target sound coming from θd [34], [35]. The
spatially informed filter is implemented in two steps.

In the first step, we detect the time-frequency bins that
belong to the target sound, assuming that the time-frequency
bins belonging to the target sound have their DOA estimates
normally distributed around the mean θd, with variance σd.
The detection is performed by measuring the closeness of each
time-frequency bin to the target sound:

cd(k, l, θd) = exp
(
− (θTF(k, l)− θd)2

2σ2
d

)
, (21)

where cd(·) ∈ [0, 1]. The higher cd(·), the higher the
probability that the (k, l)-th bin is dominated by the target
sound.

In the second step, we calculate a target correlation matrix,
i.e. the correlation matrix of the target sound:

Φss(k, l, θd) =
1

L

L∑
l=1

c2d(k, l, θd)x(k, l)x
H(k, l), (22)

where the closeness measure cd(k, l, θd) indicates the contri-
bution of the (k, l)-th bin to the correlation matrix. Given this
estimated target correlation matrix, an adaptive beamformer
can be formulated easily. We use the multichannel Wiener
filter [37]

wTF(k, l, θd) = Φ−1xx (k, l)φss1(k, l, θd), (23)

where φss1(k, l, θd) is the first column of Φss(k, l, θd), and
Φxx(k, l) is estimated directly using (12). The sound coming
from θd is extracted as

yTF(k, l, θd) = w
H
TF(k, l, θd)x(k, l). (24)
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TABLE I
SUMMARY OF CANDIDATE ALGORITHMS FOR EGO-NOISE REDUCTION. KEY – NCM: NOISE CORRELATION MATRIX. INPUT x: MICROPHONE SIGNAL; R:

MICROPHONE LOCATIONS; θd : DOA OF THE TARGET SOUND. A: ALREADY APPLIED TO MAVS; N : NEW FOR MAVS.

Algorithm Abbreviation Equation Input Status

Beamforming

Fixed Beamforming FBF (4) x, R, θd A
Adaptive beamforming with ideal NCM estimation Benchmark (10), (13) x N
Adaptive beamforming with NCM being an identity matrix ABF-Identity (10), (15) x N
Adaptive beamforming with incremental NCM estimation ABF-Inc (10), (16) x N
Adaptive beamforming with NCM estimated in noise-only periods ABF-VAD (14), (16) x N

Blind source separation BSS (18) x A
Time-frequency processing TF (22), (23) x, R, θd N

D. Discussion

Table I compares the beamforming, blind source separation,
and time-frequency processing algorithms discussed in the
previous section. The algorithms are further labelled as already
applied to MAVs, A, or new for MAVs, N .

Compared to beamforming, BSS is more flexible as it
does not require as input the locations of the microphones
and the target sound, nor the VAD information. Due to
the nonstationarity of the ego-noise and the low SNR,
the performance of the noise correlation matrix estimation
schemes (see Eqs. (13)-(16)) is limited. Estimating the
correlation matrix of the MAV ego-noise is still an open
problem. While fixed beamformers have already been applied
to MAVs [24], [25], the use of adaptive beamformers for ego-
noise reduction has not been reported yet.

BSS can extract the target sound and suppress directional
ego-noise effectively by estimating the demixing matrix.
However, there are several issues still unsolved when using
BSS in practice. First, BSS typically works as a batch process
and thus requires the acoustic mixing network to remain
stationary for a certain interval, i.e. with physically static
sound sources and microphones. Although this condition may
be satisfied in some cases, e.g. an MAV hovering stably in
the air while recording a static speaker, a dynamic mixing
network is often encountered with a flying MAV. Second, the
target sound is extracted into one of the M output channels,
whose channel index is unknown. A post-processing procedure
is needed to detect the target sound channel, e.g. by exploiting
prior knowledge of the target sound location.

The time-frequency processing approach performs ego-
noise reduction by exploiting the sparsity of the acoustic
signals. When applying this approach to MAVs, the locations
of the microphones have to be known to estimate the DOA
of the sound at each time-frequency bin. This approach
also requires as input the location of the target sound in
order to detect the time-frequency bins that could be used
for computing the target correlation matrix. This scheme
works efficiently with strong ego-noise. However, if the target
sound comes from a direction close to that of an ego-
noise source, the time-frequency bins belonging to the ego-
noise might be erroneously detected as target sound, thus
decreasing the estimation accuracy of the target correlation
matrix and degrading the noise suppression performance.
This is a major drawback of the time-frequency processing
approach. In addition, the accuracy of local DOA estimation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 

(a) 

(c) 

1 

5 

4 

3 2 

8 
7 

6 

Fig. 2. The circular microphone array mounted on the MAV. (a) Top view;
(b) Side view; (c) Recording environment.

might drop as the reverberation density is increased. However,
the fact that MAVs are mainly used in low-reverberant outdoor
environments may alleviate this problem.

IV. EXPERIMENTAL COMPARISON

A. Hardware Setup and Data

We built a hardware prototype (Fig. 2(a) and (b)) [16] com-
posed of a circular microphone array with eight omnidirec-
tional lapel microphones mounted on a 3DR IRIS quadcopter.
The array has a 0.2 m diameter and a 0.15 m distance from
the top side of the MAV. The specific mounting position of the
array helps avoiding the influence of the self-generated wind
blowing downwards from the propellers. The signals from the
eight microphones are sampled simultaneously with a Zoom
R24 recorder, at a sampling rate of 8 kHz. Fig. 2(c) depicts
the recording setup in a room of size 6m×5m×3m with a
reverberation time of around 200 ms. The quadcopter with
microphone array is fixed on a tripod at a height of 1.8 m.
A loudspeaker is placed 3 m away from the MAV and at a
height of 1.3 m, playing speech signals as the target sound.

We produce two datasets, Dataset-1 and Dataset-2, while
varying the speed of the motors randomly during the recording
of the ego-noise. The microphone signal is generated by
adding the noise and the speech at a varying input SNR from
-30 dB to 5 dB, with an interval of 5 dB. Dataset-1 is produced
with recorded ego-noise and simulated speech to enable a
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comprehensive study. The speech is simulated with the image-
source method [43] in a space of size 20m×20m×4m, with
reverberation time 200 ms. The speech source is placed 10 m
away, emitting a plane-wave sound at a varying DOA from
0◦ to 360◦, with an interval of 30◦. Dataset-2 is produced
under a more realistic scenario with the ego-noise and the
speech recorded separately. The positions of the MAV and the
loudspeaker are fixed during the recording.

B. Performance Evaluation

We evaluate the performance of seven noise reduction
algorithms (Table I): beamforming (Benchmark, FBF,
ABF-Identity, ABF-Inc and ABF-VAD), BSS (BSS),
and time-frequency processing (TF). We evaluate the noise
reduction performance using testing signals with a 10 s
duration. For all the algorithms, we set the STFT frame
length as 1024, with half overlap. For TF, we set σd = 10◦

in (21). For Inc, we set Lt = 10 in (16). Benchmark
assumes the noise correlation matrix to be known. ABF-VAD
assumes the voice activity of the target sound to be known.
BSS is implemented as in [41]. For reference, we include
an additional algorithm: a BSS method that assumes that the
permutation ambiguities are perfectly solved by referring to
the original source signals (BSS-np) [41].

We use SNR to measure the sound enhancement perfor-
mance of a spatial filter w(n), which is a time-domain version
of w(k, l). Writing the spatial filtering procedure in the time
domain, it follows that

y(n) = w(n) ∗ x(n) =
Lw−1∑
p=0

w(p)x(n− p)

= ys(n) + yv(n) = w(n) ∗ s(n) +w(n) ∗ v(n), (25)

where ‘∗’ denotes the convolutive filtering procedure and Lw is
the length of the filter w(n); ys(n) and yv(n) are, respectively,
the target and noise components at the output. The SNR is
calculated in target-sound-active periods Ns as [38]

SNR = 10 log10

∑
n′∈Ns y

2
s(n
′)∑

n′∈Ns y
2
v(n
′)
. (26)

We compare the SNR improvement between the input and
output signals, i.e.

SNRimp = SNRout − SNRin. (27)

C. Results

We discuss the processing results of time-frequency pro-
cessing (TF) in Fig. 3 for a simulated target sound (speech
signal) coming from 0◦ and with an input SNR of -10 dB.
Fig. 3(a) and Fig. 3(b) depict the time-domain waveform
and the time-frequency spectrum of the input signal at one
microphone. The speech signal is hardly distinguishable from
the noisy background. Fig. 3(c) and Fig. 3(d), respectively,
depict the time-frequency spectra of the clean ego-noise and
clean speech components of the microphone signal. The
time-frequency sparsity of both components can be clearly
observed: the ego-noise harmonics and the speech harmonics
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Fig. 3. Processing results with TF, BSS and Benchmark for a target sound
with DOA 0◦ and input SNR -10 dB. (a)-(b): Time-domain waveform and
time-frequency spectrum of the input signal. (c)-(d): Time-frequency spectra
of the clean ego-noise and clean speech signals. (e) Local DOA estimation
results |θTF(k, l)|. (f) Contribution measure to the target sound cd(k, l, 0). (g)-
(h): Time-domain waveform and time-frequency spectrum of the TF output.
(i)-(j): Time-frequency spectra of the BSS and Benchmark outputs. The
output SNRs of TF, BSS and Benchmark are 13.9 dB, 14.4 dB and 14.5 dB,
respectively.

generally occupy different time-frequency bins. Fig. 3(e)
depicts the local DOA estimation results at individual time-
frequency bins. For convenience of display, we plot the
absolute values |θTF(k, l)| ∈ [0◦, 180◦]. Most time-frequency
bins that are dominated by speech components have their
DOAs estimated at around 0◦, distinguishing them from the
background noise. Fig. 3(f) depicts the contribution measure
cd(k, l) from each time-frequency bin to the computation of
the target correlation matrix. Those speech-dominated time-
frequency bins contribute the most to the correlation matrix.
Fig. 3(g) and Fig. 3(h) depict the time-domain waveform and
the time-frequency spectrum of the spatial filtering output
yTF, where the strong harmonic noises are almost completely
removed and the speech signal can be clearly observed
(SNR: 13.9 dB). For reference, Fig. 3(i) and Fig. 3(j) depict
the time-frequency spectra of the output signals by BSS
and Benchmark, respectively. The target sounds are well
enhanced with the output SNRs being 14.4 dB and 14.5 dB,
respectively.
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Next, we evaluate the performance of the considered noise
reduction algorithms when the target sound comes from a
fixed direction with a varying input SNR from -30 dB to
5 dB, with an interval of 5 dB. For each input SNR we
implement 10 realizations with different segments of noise and
speech signals and calculate the averaged SNR improvement.
Fig. 4(a) depicts the evaluation results for a simulated target
sound coming from 0◦ (Dataset-1). With perfect knowledge
of the noise correlation matrix, Benchmark outperforms
all the other algorithms, with its performance invariant with
respect to the varying SNRin. We thus use its result as a
benchmark for ego-noise reduction. The performance of TF
and BSS both improves with increasing SNRin for SNRin ≤
-15 dB and then declines with increasing SNRin for SNRin ≥
-10 dB. The performance of TF is close to Benchmark for
-20dB ≤ SNRin ≤ -5dB. TF outperforms BSS in almost all
scenarios, especially when SNRin ≤ -15 dB. The performance
degradation of BSS in low SNRs is due to strong ego-
noise, which deteriorates both ICA and permutation alignment.
This is verified by comparing BSS and BSS-np, which
outperforms BSS for all SNRin especially when SNRin ≤
-15 dB. This shows that BSS still suffers from permutation
errors even after permutation alignment processing, and these
residual permutation errors become more important when
the ego-noise becomes stronger. The performance drop of
BSS-np with decreasing SNRin when SNRin ≤ -15 dB
indicates deteriorated ICA performance. By exploiting the
time-frequency sparsity of the acoustic signals and the target
direction, TF outperforms BSS especially in low SNRs. The
performance degradation of TF in low SNRs is due to
the broadband component of the ego-noise. With its energy
uniformly distributed through the whole frequency band, the
broadband noise may severely mask the target sound in low-
SNR scenarios and corrupt local DOA estimation at harmonic
frequencies of the target sound. For high SNRin, the output
SNRs of TF and BSS both rise, but with a lower rate in
comparison to the increment of SNRin, thus leading to declined
SNR improvement with increasing SNRin. The performance
drop of TF at high SNRs also shows that the estimation error
of the target correlation matrix becomes pronounced when the
energy of the target sound increases with the SNRin.
TF and BSS outperform the four beamforming algorithms,

i.e. ABF-VAD, ABF-Identity, ABF-Inc and FBF, for
almost all input SNRs. The poor performance of these
beamforming algorithms is mainly due to their inaccurate
estimation of the noise correlation matrix. Interestingly, their
performance varies differently with the SNRin. Assuming that
a perfect VAD is available, ABF-VAD estimates the noise
correlation matrix more accurately and hence leads to a much
higher SNR improvement than the other three algorithms.
However, ABF-VAD still performs worse than Benchmark,
due to the nonstationarity of the ego-noise, i.e. the noise
correlation matrix in noise-only periods is different from the
one in the target-sound-active periods. The influence of this
estimation error grows when the noise intensity is increased,
leading to declined SNR improvement with decreasing SNRin.
ABF-Identity uses an identity matrix as the noise corre-
lation matrix estimate. The influence of the estimation error
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Fig. 4. SNR improvement with different noise reduction algorithms for a
varying input SNR. (a) Simulated target sound with DOA 0◦ (Dataset-1).
(b) Real-recorded target sound with DOA 160◦ (Dataset-2). The consid-
ered algorithms are beamforming (Benchmark, FBF, ABF-Identity,
ABF-Inc and ABF-VAD), blind source separation (BSS and BSS-np), and
time-frequency processing (TF). Benchmark assumes the noise correlation
to be perfectly known. ABF-VAD assumes a perfect VAD. BSS-np assumes
permutation ambiguities to be perfectly solved. A demo with the audio signals
corresponding to (a) and (b) is available [44].

becomes smaller when the intensity of the speech is increased,
leading to increased SNR improvement with increasing SNRin.
ABF-Inc uses the microphone signal in previous frames to
estimate the noise correlation matrix of the current frame. The
estimation error becomes pronounced when the intensity of
speech is increased, leading to decreased SNR improvement
with increasing SNRin. While FBF improves the SNR only
limitedly, this improvement does not vary with the SNRin.

Fig. 4(b) shows the evaluation results for a real-recorded
target sound coming from 160◦ (Dataset-2). We can make
similar observations to those made for Fig. 4(a). Benchmark
is the best performer, followed by BSS-np, TF and BSS. TF
outperforms BSS when SNRin ≤ -10 dB, while BSS performs
better when SNRin ≥ -5 dB. TF and BSS outperform the
four beamforming algorithms (ABF-VAD, ABF-Identity,
ABF-Inc and FBF).

Finally, Fig. 5 shows the evaluation result for the three
representative noise reduction algorithms (Benchmark, BSS,
TF) when varying the DOA of the target sound anti-clockwise
from -150◦ to 150◦, with an interval of 30◦ (Dataset-1). We
consider four input SNRs: -30 dB, -20 dB, 10 dB and 0 dB.
For each DOA and input SNR, we implement one realization
and calculate the SNR improvement. Benchmark produces
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Fig. 5. SNR improvement with three noise reduction algorithms (Benchmark, BSS, TF) for a target sound with a varying DOA and at different input SNRs
(Dataset-1).

the best result among the three algorithms and its performance
does not vary with variations of DOA. The performance of
BSS is close to that of Benchmark for high SNRin (-10
and 0 dB) and does not change when the DOA varies. The
performance of BSS drops significantly for low SNRin (-30
and -20 dB). The performance of TF is sensitive to the
variation of DOA. For all SNRin a performance drop can be
clearly observed at DOAs 30◦ and 90◦. For low SNRin (-30
and -20 dB) an additional performance drop can be observed
at DOA -90◦, because the ego-noise is dominant in these
directions (30◦, 90◦, -90◦). As discussed in Sec. III-D, the
noise from one of these directions is detected as target sound,
thus leading to an inaccurate correlation matrix and degraded
noise reduction performance. When excluding these directions,
TF performs similarly to BSS for high SNRin (-10 and 0 dB)
and outperforms BSS for low SNRin (-30 and -20 dB).

V. CONCLUSIONS

We addressed the problem of acoustic sensing using
multiple microphones mounted on an MAV. The main chal-
lenge is dealing with extremely low SNRs that degrade the
sound recording quality significantly because of the ego-noise
generated by motors and propellers. To address this problem,
we proposed to use a time-frequency spatial filtering approach.
We also evaluated beamforming and blind source separation
algorithms that could be applied to MAV-based ego-noise
reduction. Blind source separation (BSS) and time-frequency
processing (TF) outperform beamforming algorithms. The
biggest challenge for beamforming is the estimation of the
noise correlation matrix. Due to the nonstationarity of the ego-
noise, ABF-VAD, which assumes a perfect VAD and estimates
the noise correlation matrix in noise-only periods, performs
considerably worse than Benchmark, which assumes the
noise correlation matrix to be known. As expected, the
performance of TF degrades when the target sound arrives
from a direction close to that of the ego-noise. TF outperforms
BSS especially in low-SNR scenarios (e.g. ≤ -15 dB), but
requires the knowledge of the DOA of the target sound, which
could be obtained with an onboard camera and an object
tracker [4]. Since the relative locations between the propellers
and the microphones are fixed during the MAV movement, the
MAV can then be intentionally rotated so that the target sound
comes from a different direction from that of a propeller.

In our future work, we will investigate the effect of different
array geometries placements and of the mobility of the MAV.
In addition to this, we will also extend the algorithms to
address scenarios with natural wind and multiple simultaneous
sound sources.
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