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Biologically-Inspired Motion Encoding
for Robust Global Motion Estimation

Evangelos Sariyanidi, Hatice Gunes, and Andrea Cavallaro

Abstract—The growing use of cameras embedded in au-
tonomous robotic platforms and worn by people is increasing
the importance of accurate global motion estimation (GME).
However, existing GME methods may degrade considerably
under illumination variations. In this paper, we address this
problem by proposing a biologically-inspired GME method that
achieves high estimation accuracy in the presence of illumination
variations. We mimic the early layers of the human visual cortex
with the spatio-temporal Gabor motion energy by adopting the
pioneering model of Adelson and Bergen and we provide the
closed-form expressions that enable the study and adaptation
of this model to different application needs. Moreover, we
propose a normalisation scheme for motion energy to tackle
temporal illumination variations. Finally, we provide an overall
GME scheme which, to the best of our knowledge, achieves the
highest accuracy on the Pose, Illumination, and Expression (PIE)
database.

Index Terms—bio-inspired motion encoding, illumination nor-
malisation, global motion estimation

I. INTRODUCTION

GLOBAL motion estimation (GME) is an increasingly
important task because of the growing use of cameras

embedded in autonomous platforms or worn by people. Esti-
mating accurately the rigid motion between images is desirable
for measuring egomotion for mobile robotics [1], [2], [3] and
wearable cameras [4]; and also for image stabilisation [5], [6],
[7], object segmentation [8] and motion magnification [9].

The main challenges for GME [10] are outliers, illumination
variations and textureless regions. Outliers are produced by
local motions or lens distortions that cannot be represented
with rigid transformations. Lens distortions are particularly
prominent in wide-angle cameras. Illumination variations
change pixel intensities and therefore the apparent motion in
the images. Finally, textureless regions provide limited or noisy
information about the real motion [11]. Existing GME methods
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cannot deal with all these challenges concurrently while also
achieving high accuracy, as we will discuss in Section II.

Motion perception, an active research field in biology,
aims at understanding how mammals perceive the speed and
orientation of visual elements in dynamic scenes. The human
visual cortex has a very efficient motion perception ability
that discerns subtle motions [12] while also being adaptive
to changes in lighting conditions [13]. The pioneering work
of Adelson and Bergen [14] showed that the early layers of
the visual cortex perceive motion through complex cells that
behave like speed- and orientation-sensitive Gabor filters.

In this paper, we propose to encode motion by emulating
the behaviour of the lower layers of the visual cortex [13]
(see Fig. 1). We provide closed-form expressions that can
be used to study the Adelson and Bergen’s model [14]
and we also propose an illumination normalisation scheme
that renders the output of Gabor filtering robust against the
brightness value of dynamic elements as well as temporal
illumination variations. Furthermore, we propose an overall
GME scheme, which, to the best of our knowledge, is the first
biologically-inspired GME approach that is validated on real
sequences with challenging illumination variations. We show
that this scheme achieves high accuracy even in the presence
of challenging illumination variations, outperforming state-of-
the-art GME methods. The major contributions of this paper
are summarized below.

‚ We develop the closed-form mathematical expressions
that can be used to study the motion perception model of
Adelson and Bergen for 2D motion, as the original model
is analysed for 1D motion only. Specifically, we provide
the formulation of Gabor motion energy for a moving line
and show how to tune a spatio-temporal Gabor filter pair
to a specific type of motion.

‚ We propose an illumination normalisation scheme that re-
duces the sensitivity of Gabor motion energy to temporal
illumination variations.

‚ We show that a statistical approach can efficiently model
the non-linear relationship between local Gabor features
and the corresponding local motion vectors.

This paper is organized as follows. Section II discusses
existing works. Section III summarises the proposed GME
scheme. In Section IV we discuss how Gabor motion energy
encodes motion and we provide the closed form expressions
of Gabor motion energy. Section V describes the proposed
illumination normalisation scheme, and Section VI describes
the statistical modelling that we employ while producing local
motion vector estimates from motion energy. Section VII
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provides the experimental validation of our work, and finally
Section VIII concludes the paper and discusses future work.

II. RELATED WORK

GME approaches can be categorised in five groups, namely
keypoint matching, estimation from a coarse motion vector
(MV) field, estimation from a dense MV field, global trans-
formation and direct minimisation/maximisation.

Keypoint matching methods estimate motion using a num-
ber of sparsely located image points that are centred on
visually salient regions with rich texture [15]. These methods
prevailed mainly due to their tolerance to large outlier motions,
which is achieved by robust estimators such as RANSAC [16].
Keypoint matching methods tend to fail when regions of (out-
lier) local motions contain rich texture while regions of global
motion are relatively flat and with illumination variations that
severely reduce the number of matched features [6].

Methods based on a coarse MV field divide the input space
into non-overlapping blocks (e.g. 4 ˆ 4, 8 ˆ 8) and compute
an MV for each block. Then, global motion can be estimated
from the motion model that best approximates the set of given
MVs. The influence of outliers can be reduced by discarding
them based on an error histogram, or by employing robust
estimators such as RANSAC or M-estimator [23], [21]. In the
presence of a foreground object, robustness can be increased
further by first detecting and then excluding foreground motion
from GME [37]. Methods based on a coarse MV field are
typically employed for video coding where computational cost
is critical [38]. For this reason, MVs are computed with simple
methods (e.g. block matching [38]). However, such methods
are sensitive to illumination variations (see Section VII).
Moreover, the performance of GME based on a coarse MV
field can degrade if the input images contain low-texture areas.

The techniques discussed in the rest of this section are
expected to be more resilient to lack of texture as they use
information from all the pixels during GME. Methods based
on a dense MV field compute an MV for each pixel rather
than a block and then compute global motion with a (robust)
estimator. A dense MV field can be computed with optical flow
techniques, which can achieve higher accuracy than coarse MV
computation techniques. The optical flow formulation of Horn
and Schunck [24], which computes MVs by minimising an
energy function with global constraints to tackle the aperture
problem, was extended to improve robustness against illu-
mination variations by relaxing these constraints [25] and/or
employing robust estimators [26]. One of the best-performing
optical flow estimators [39] is the 2010 winner of the Mid-
dlebury evaluation [27], which is an extension of the Horn
and Schunck formulation with a non-linear penalty function
and median filtering for intermediate flow fields. However, this
method provides a limited accuracy for GME with challenging
illumination variations (see Section VII).

Methods based on global transformation exploit the prop-
erties of Fourier [29], [30], Fourier-Mellin [32] or Radon
transformations [31], [15]. These methods cannot model
generic motions such as perspective motions with 8 degrees
of freedom (DoF). In fact, the Fourier transformation can

model at most Euclidean motions (4 DoF [29], [30]), and
the Radon transformation can model affine motions with 5
DoF [31] or 6 DoF [15]. Furthermore, methods based on
global transformation are sensitive to outlier local motions
and illumination variations [29]. Although a robust version
of the fast Fourier transform (FFT) [29] proves successful
against these challenges, its accuracy in simpler conditions
without illumination variations can be lower than the accuracy
of feature-based methods [6].

A typical approach based on direct minimisation is the
Lucas-Kanade (LK) method [34], which estimates the mo-
tion between two frames by optimising an energy function,
such as the sum of squared difference between frames. The
optimisation algorithm (e.g. gradient descent) relies on local
function approximation theories (e.g. Taylor expansion [34]).
These theories are typically built on a smoothness assumption
(i.e. once/twice differentiability) [34], which may be violated
in the presence of sudden illumination variations, shadows or
partial occlusions [26]. LK-based approaches tolerate outlier
motions, as the contribution of each local image patch to the
optimised energy function is independent from the rest of
the image. However, if outlier local motions occur in a large
portion of the image, their contribution to the energy function
may become significant and undermine the accuracy of GME
[40]. Numerous extensions of LK have been proposed, which
differ in the energy function that is optimised, the optimi-
sation algorithm that is employed or the domain where the
optimisation is performed [34], [36], [41], [35], [42], [43]. The
LK methods that operate in the pixel domain are particularly
sensitive to illumination variations. Pre-processing with Gabor
filters [35] improves the robustness of LK methods against
illumination variations, but only to a degree [36]. Another sim-
ilar method, which is one of the most robust methods against
illumination variations, is based on the direct maximisation of
gradient correlation coefficient (MGCC) [36]. MGCC employs
a cosine kernel, which improves robustness against outliers
and illumination by eliminating local mismatches. However,
MGCC removes some information, most notably the gradient
magnitude, which may cause it to underperform in simpler
conditions without outliers [36]. The methods discussed in
this section are summarised in Table I and compared with
the proposed method.

III. OVERVIEW OF THE PROPOSED APPROACH

Fig. 2 illustrates our overall GME scheme on an exemplar
pair of images collected with a wearable (head-mounted)
camera, where the aim is to estimate the global motion due
to camera (i.e. head) movement. Ours is a dense and local
method, as it computes local motion vectors for each pixel,
and has three principal processing layers: low-level motion
encoding, local motion estimation and global motion estima-
tion. Low-level motion encoding emulates the behaviour of
the human visual system by employing spatio-temporal Gabor
filter pairs to compute motion energy, which provides implicit
information about the speed and orientation of each pixel in the
input image pair. Gabor filters provide some tolerance against
salt-and-pepper and Gaussian (e.g. white) noise [44]. Also,
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Fig. 1. Two exemplar cases that illustrate how Gabor motion energies computed from multiple pairs of spatio-temporal Gabor filters enable the identification
of motion speed and orientation. (a) Two lines that are moving with the same speed but with different orientations (90˝ and 45˝): The maximal energy for
each line is produced with the filter pair that is tuned to the lines’ orientation. (b) Two lines that are moving with the same orientation but with different
speeds (16 and 32): The maximal motion energy is produced with the filter that is tuned to the lines’ speed.

TABLE I
REPRESENTATIVE WORKS FROM DIFFERENT GME PARADIGMS. :DENSE OPTICAL FLOW ESTIMATION METHODS RATHER THAN GME METHODS,

HOWEVER THEY CAN BE USED FOR GME AFTER ELIMINATING OUTLIER MOTION VECTORS. ˚THE TOLERANCE OF THESE METHODS TO LOW TEXTURE
MAY VARY DEPENDING ON THE DENSITY OF THE MV FIELD.

Reference Approach to Motion Estimation Texture Tolerance
to Outliers

Tolerance to
Illumination Variations

Motion
Model

Tested Against
Illumination?

Feature-
based

Lowe ’04 [17] SIFT feature matching Strong RANSAC — 8 DoF —
Bay ’06 [18] SURF feature matching Strong RANSAC — 8 DoF —
Okade ’14 [19] MSER feature matching Strong RANSAC — 8 DoF —
Ryu ’12 [20] KLT feature matching Strong RANSAC — 8 DoF —

Coarse
MV-based

Smolić ’00 [21] M-Estimator on MVs Strong˚ M-Estimator — 8 DoF —
Chen ’10 [22] Least squares on MVs Strong˚ Cascaded outlier elim. — 8 DoF —
Su ’05 [23] Least squares on MVs Strong˚ Histogram-based elim. — 8 DoF —

Dense
MV-based

Horn: ’81 [24] Error min. with global constr. Mild Outlier elim.: — 8 DoF —
Gennert: ’87 [25] Error min. with global constr. Mild Outlier elim.: Relaxed constr. 8 DoF Synthetic
Kim ’05 [26] Error min. with global constr. Mild Outlier elim.: Relaxed constr.&M-estim. 8 DoF Synthetic
Sun ’10 [27] Error min. with global constr. Mild Outlier elim.: Texture/structure dec. 8 DoF —

Global
Transform

Tzimirop. ’11[28] Fourier transform Mild — Gradient correlation 2 DoF —
Tzimirop. ’10[29] Fourier transform (log-polar) Mild Cosine kernel Gradient correlation 4 DoF —
Pan ’09 [30] Multi-layer Fourier transform Mild — — 4 DoF —
Traver ’08 [31] Radon transform Mild — — 5 DoF —
Xiong ’14 [15] Radon transform Mild — — 6 DoF —
Kumar ’11 [32] Fourier transform (block-based) Mild RANSAC — 6 DoF —

Direct
minimisation/
maximisation

Dufaux ’00 [33] SSD error min. Mild Histogram-based elim. — 6 DoF —
Baker ’04 [34] Lucas-Kanade error min. Mild Local op. — 6 DoF —
Ashraf ’10 [35] Lucas-Kanade error min. Mild Local op. (2D) Gabor filtering 6 DoF Real (N/A)
Tzimirop. ’11[36] Gradient correlation max. Mild Cosine kernel Gradient correlation 6 DoF Real (182 pairs)

Dense
MV-based This work Bio-inspired motion encoding,

statistical MV estimation Mild RANSAC (3D) Gabor filtering,
Illumination Norm. 8 DoF Real (400 pairs)

they are partly robust to illumination variations as they are
localised in space and we improve their robustness further by
applying illumination normalisation over time.

In local motion estimation we model local motion statis-
tically with a function that takes as input the local motion
energy within a PˆP -sized region around a pixel, and outputs
a local motion vector estimation for the pixel — we produce
a local motion vector for each pixel by applying this function
to all the pixels. Specifically, we use a single-hidden-layer
neural network, which is one of the best established techniques
used for (non-linear) statistical modelling [45]. A statistical
approach has the advantage of modelling this relationship
using existing data that link local features to motion vectors
in a bottom-up fashion, instead of making assumptions on the
relationship between features and motion vectors.

In the third layer, global motion estimation, we employ
RANSAC to eliminate outlier motion vectors that may be
caused by local motion estimation errors, by occlusions or
by motions that are not congruent with the global motion. We
finally estimate global motion from inlier motion vectors as a
projective transformation with 8 DoF.

IV. BIOLOGICALLY-INSPIRED MOTION ENCODING

Motion perception at the lower layers of the visual cortex
is typically analysed based on the response of a visual cell to
a moving line [14]. In this section, we first obtain the closed-
form expression of Gabor motion energy for a moving line
and then show how to tune a Gabor filter to a particular speed
and direction.
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Fig. 2. Illustration of our GME approach. We estimate local motion vectors across the image, then we eliminate outlier motion vectors (shown in red) through
RANSAC, and finally estimate global motion from inlier vectors (shown in green). While estimating the motion vector around a pixel, we use the energy
values across a P ˆ P -sized region centred on the pixel. We compute the energy with multiple filter pairs, each tuned to a different orientation.

A. Motion Energy for a Moving Line

Let I “∆ Ipx, y, tq denote a sequence of a moving line as:

Ipx, y, tq “∆ cδ px cos θl ´ y sin θl ´ tvlq , (1)

where δ is Dirac’s delta x, y, t denote spatial coordinates and
time; θl defines the orientation of I; vl ě 0 defines the speed
and c ą 0 is the luminance value of I. A 3D Gabor filter can
be represented as [46]:

gpx, y, tq “∆
γ

2π
?

2πσ2τ
cos

ˆ

2π

λ
px̄` vgt` αq

˙

e´
x̄2`γȳ2

2σ2 ´ t2

2τ2 , (2)

where x̄ “ x cospθgq ` y sinpθgq and ȳ “ ´x sinpθgq `
y cospθgq. To avoid cluttering, we define the following param-
eters as γ “ 1, λ “ 2π, τ “ 1{

?
2 and σ “ 1{

?
2 (see [46]

for a detailed discussion on these parameters). The parameters
θg and vg ě 0 define the orientation and speed of motion that
the filter is tuned for, α is the phase offset which can be set to
α “ 0 to obtain an even-phased (cosine) filter, ge, and α “ π

2
to obtain an odd-phased (sine) filter, go. The two filters form
a quadrature pair pge, goq.

Adelson and Bergen define the motion energy for a sequence
I through a quadrature filter pair as [14]:

EIpx, y, tq “
∆
pI ˚ geq2 ` pI ˚ goq2. (3)

In one (spatial) dimension, the energy gets maximal when the
speed of the line is equal to the speed of the filter [14]. Energy
gets monotonically smaller as the speed of the filter becomes
larger or smaller than the speed of the line. This well-defined
relationship between speed and magnitude of energy enables
the identification of the speed of the line.

For the two-dimensional line, energy depends not only
on line and filter speeds vl, vg but also on orientations (or
directions) θl and θg . To interpret energy correctly, we must
know how to tune the filter parameters θg and vg so as to yield
maximal energy EI for a given line I. In the remainder of this
section, we first obtain the closed-form expression of EI and
then show how EI can be maximised.

To compute EI, we must compute the convolutions I ˚ ge

and I ˚ go. The convolution I ˚ ge requires the computation of
a triple integral that can be challenging even for a computer
algebra system. Therefore we make use of the Convolution
Theorem, which states that, under suitable conditions, the
Fourier transform of the convolution of two functions is
equivalent to the pointwise product of their Fourier transforms,

i.e. FtI ˚ gu “ FtIuFtgu. The Fourier transforms of I, ge

are denoted respectively with Î, ĝe and are computed using
Mathematica as1:

Îpξ1, ξ2, ξ3q “ c

?
2π

cos θl
δ pξ1vl sec θl ` ξ3q

δpξ1 tan θl ` ξ2q, (4)

ĝepξ1, ξ2, ξ3q “
1

4
?

2π
?
π

`

1` eξ3vg`ξ1 cos θg`ξ2 sin θg
˘

e´
2ξ2 sin θg`1`ξ21`ξ

2
2`pξ3`vgq

2`2ξ1 cos θg
4 . (5)

I˚ge is obtained with an inverse transform, I˚ge “ F´1tÎĝeu:

I ˚ ge “
c sgnpsec θlq

2
?

2π2
a

1` v2
l

cos
pvgvl ´ cos θglqptvl ´ x cos θl ` y sin θlq

1` v2
l

e
´
vgvl cos θgl`4tyvl sin θl´4x cos θlptvl`sin θlq

2p1`v2
l
q

e
´

1`4x2`4y2`2v2
g`p2`8t2qv2

l ´cos 2θgl`4px2´y2q cos 2θl

8p1`v2
l
q , (6)

where θgl “
∆ θg ` θl. The convolution with the odd-phased

filter, I˚ go, produces a similar output and the only difference
is that the first cos function is replaced with ´ sin. Finally,
using I ˚ ge and I ˚ go, we can compute the energy for the
moving line EI “ pI ˚ g

eq2 ` pI ˚ goq2 as:

EI “
c̄2

1` v2
l

e
´
vgvl cos θgl`4tyvl sin θl´4x cos θlptvl`y sin θlq

1`v2
l

e
´

1`4x2`4y2`2v2
g`p2`8t2qv2

l ´cos 2θgl`4px2´y2q cos 2θl

4p1`v2
l
q , (7)

where c̄ “∆ c
2
?

2π2
. An interactive plot that shows how EI

varies with filter parameters θg, vg and line parameters θl, vl
is provided as supplementary material1.

B. Tuning a Gabor Filter Pair

In order to tune a Gabor filter pair to a particular speed vl
and spatial orientation θl, we should find the vg and θg values
that maximise EI. To this end, we first find all extrema of EI,
and then find which of these are the maxima.

1The Mathematica files that are used to obtain the expressions throughout
this section are on ftp://spit.eecs.qmul.ac.uk/pub/es/gme.zip

ftp://spit.eecs.qmul.ac.uk/pub/es/gme.zip
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To find extrema, we compute the first-order partial deriva-
tives of EI with respect to vg and θg:

BEI

Bvg
“´

1

1` v2
l

pvg ` vl cos θglqEI, (8)

BEI

Bθg
“´

1

1` v2
l

pcos θgl ´ vgvlq sin θglEI. (9)

The solutions that make both partial derivatives zero can be
considered as four sets, S1, S2, S3, S4, that are defined as:

S1 “
∆
tpvg, θgq : p0,´π{2´ θl ` 2π kq, k P Zu, (10)

S2 “
∆
tpvg, θgq : p0, π{2´ θl ` 2π kq, k P Zu, (11)

S3 “
∆
tpvg, θgq : pvl, π ´ θl ` 2π kq, k P Zu, (12)

S4 “
∆
tpvg, θgq : p´vl,´θl ` 2π kq, k P Zu. (13)

We eliminate S4 as we assume vl, vg ě 0, so the only solution
to satisfy S4 is vl “ vg “ 0, which implies that the line is not
moving. To determine whether there is a maximum among the
remaining solutions, S1, S2, S3, we use the second derivative
test. The second partial derivatives of EI are:

BE2
I

B2υg
“
“

vl cos θglp2vg ` vl cos θglq

´ 1` v2
g ´ v

2
l

‰ EI

p1` v2
l q

2
, (14)

BE2
I

B2θg
“
“

p1` v2
l qpvgvl cos θgl ´ cos 2θglq

` pcos θgl ´ vgvlq
2 sin2 θgl

‰ EI

p1` v2
l q

2
, (15)

BE2
I

BθgBvg
“
“

vlp3´ 2v2
g ` 2v2

l ` cos 2θglq

´ 2vg cos θglpv
2
l ´ 1q

‰ EI sin θgl
2p1` v2

l q
2
. (16)

To perform the second partial derivative test, we construct the
Hessian matrix H and compute its determinant as a function
Dpvg, θgq as follows:

H “

»

–

BE2
I

B2vg

BE2
I

BvgBθg
BE2

I

BθgBvg

BE2
I

B2θg

fi

fl , (17)

Dpvg, θgq “
∆ detpHq “

BE2
I

B2vg

BE2
I

B2θg
´

ˆ

BE2
I

BθgBvg

˙2

. (18)

To determine whether the solutions S1, S2 or S3 are extrema,
we denote the determinants of those solutions respectively as
DS1 , DS2 , DS3 and compute them as1:

DS1
“ DS2

“´Ke
2py2´x2q cos 2θl´8tyvl sin θl`4xy sin 2θl

1`v2
l

e
´

8txvl cos θl´1´2x2´2y2´v2
l ´4t2v2

l
1`v2

l , (19)

DS3
“ Ke

´ 4

1`v2
l

ptvl´x cos θl`y sin θlq
2

, (20)

where K “ c2

p2
?

2π2q4p1`v2
l q

3
ą 0. Since the outcome of the

exp function is always positive, DS1 , DS2 are always negative;
therefore, S1, S2 contain saddle points and not extrema. On
the other hand, S3 contains extrema as DS3

ą 0. To check

whether S3 contains maxima or minima, we check the partial
derivative BE2

I

B2vg
for the solutions of S3:

BE2
I

B2vg

ˇ

ˇ

ˇ

ˇ

pvg,θgqPS3

“
´c e

´
2py sin θl`tvl´x cos θlq

2

1`v2
l

8π4p1` v2
l q

2
. (21)

This expression is always negative, therefore pvg, θgq P S3

are maxima. In conclusion, to tune the filters ge and go to a
line moving with spatial orientation θl and speed vl, the filter
parameters vg and θg must be defined as follows:

vg “ vl, (22)
θg “ π ´ θl ` 2πk. (23)

Once we know how to tune one filter, we can obtain a
complete motion representation by computing multiple energy
functions, each involving a different filter pair tuned to a
different speed and orientation [14]. Such a representation
enables the identification of the speed and direction of an
unknown line: the Gabor filters that are tuned to a motion
similar to that of the unknown line would produce a higher
energy than other filters (Fig. 1). In Fig. 1a we show how the
motion energy computed from multiple Gabor filters enables
us to identify the orientations of two different lines (one at
each row) that move with the same speed. The line at the top
of Fig. 1a moves with an orientation of π

2 and the maximal
energy is produced with the spatio-temporal Gabor filter that
is tuned to the speed of the line, that is, according to (23),
θg “

π
2 . Similarly, the maximal energy for the line at the

bottom of Fig. 1a is produced by the filter with θg “ 3π
4 as this

is the filter that is tuned to the orientation of the line (i.e. π4 ). A
similar discussion applies for the examples in Fig. 1b, where
we show how energy can be used to discover the speed of
two lines: The maximal motion energies are produced by the
filters that are tuned through (22) to the speed of each line.

V. ILLUMINATION NORMALISATION

Motion energy is sensitive not only to the brightness of
moving elements but also to temporal illumination variations.
In this section we propose a normalisation scheme to reduce
illumination sensitivity. We show how this scheme eliminates
the dependence on the initial brightness of a moving line and
we extend it to tackle temporal illumination variations for
generic sequences.

A. Normalisation of Line Brightness

As it can be seen in (7), the motion energy of a moving
line is sensitive to illumination conditions even if there are
no temporal illumination variations, due to the illumination-
dependent constant c2. This section aims at obtaining a
normalised sequence Ĩ “∆ Ĩpx, y, tq such that the energy of
this sequence, EĨ, is illumination-independent and yet its
functional form is still equal to that of EI. Such a sequence can
be obtained by dividing the frames of I with a coefficient that
is proportional to c2; this is akin to the contrast normalisation
that is arguably employed by the mammal visual cortex [47],
[13]. We now show how such a coefficient can be obtained.
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Fig. 3. Illustration of how we create static sequences. (a) I: sequence of a
line that moves horizontally. (b) It0 : static sequence created from I using the
frame at time t0; (c) It1 : static sequence created from I with the frame at t1.

Assume that we have a sequence of a static line whose
luminance value is c. Then, according to (7), the energy of
the static line will be proportional to c2 and, because the line
is not moving, the energy will be constant over time. The
energy of this static line provides us with the coefficient that
we need for normalisation: A coefficient that is constant over
time and proportional to c2.

In fact, we do have a way of obtaining such a sequence:
We can take a frame from I at any time tk, and obtain a
static sequence, Itk P R3, by replicating this frame over time.
We illustrate this for the exemplar horizontally moving line
in Fig. 3a by creating two static sequences, It0 and It1 (see
Fig. 3b,c). Such static sequences obtained from a sequence I
can be defined as Itkpx, y, tq “∆ Ipx, y, tkq.

Let us obtain our normalisation coefficient using the static
line at time tk “ 0. The speed of this static line, vl, is zero,
and therefore its energy is:

EI0 “ c̄2e´
1`4x2`4y2`2v2

g`4px2´y2q cos 2θl´cos 2θgl´8xy sin 2θl
4 .

(24)
As expected, the energy of this static line is constant over time
and proportional to c̄2 (and c2). To complete our normalisation,
we need to extract a single coefficient from the function
EI0 . This can be achieved by integrating EI0 over the entire
sequence domain, Ω “ XˆY ˆT . Let ZIt be a function that
computes the normalisation coefficient as:

ZIt “
∆

ż

Ω

EItpx
1qdx1, (25)

where x1 “ px1, y1, t1q. Then, the normalisation coefficient of
EI0 can be computed as:

ZI0 “

ż

Ω

EI0px1qdx1 “ c̄2
ż

Ω

EI0px1q

c̄2
dx1 “

c2

8π4
S, (26)

where S denotes the output of a definite integral that is another
constant but one that does not depend on the illumination of
the line. Finally, we obtain the normalised sequence as:

Ĩ “
1

?
ZI0

I “
2
?

2π2

?
S

δpx cos θl ´ y sin θl ´ tvlq. (27)

As desired, the energy of this line, EĨ, will be independent of
c, and its functional form would be equal to that of EI.

B. Normalisation of Temporal Illumination Variations

The normalised sequence in (27) was obtained by dividing
the sequence with a single coefficient ZI0 . To tackle temporal
variations, we divide each frame of the sequence with a
separate (time-dependent) coefficient ZIt :

Ĩpx, y, tq “
1

?
ZIt

Ipx, y, tq, (28)

where ZIt is computed as in (25) but, because now it is
computed from a generic sequence without a closed-form
expression, we can represent it only as a definite integral.

To show that this extension is able to tackle temporal
illumination variations for sequences without closed-form ex-
pressions, we recast the problem of illumination normalisation
as follows. Consider a sequence Ip “

∆ Ippx, y, tq where there
are no illumination variations, and another sequence Iq that
contains the same motion as Ip but is affected by a temporal
variation such as Iqpx, y, tq “

∆
pαt ` βqIppx, y, tq. Our goal

with illumination normalisation is to have normalised versions
of these sequences that have equal energies, that is, EĨp

“ EĨq
.

The energies of normalised sequences can be written as:

EĨp
“

»

–

ż

Ippuq
b

ZIwp

gepx̄qdu

fi

fl

2

`

»

–

ż

Ippuq
b

ZIwp

gopx̄qdu

fi

fl

2

,

(29)

EĨq
“

»

–

ż

Iqpuq
b

ZIwq

gepx̄qdu

fi

fl

2

`

»

–

ż

Iqpuq
b

ZIwq

gopx̄qdu

fi

fl

2

,

(30)

where u “ pu, v, wq and x̄ “ x ´ u. Note that Iwq px, y, tq “
Iqpx, y, wq “ pαw`βqIppx, y, wq “ pαw`βqI

w
p px, y, tq, and

because the convolution involved in energy computation is a
linear operator, we can compute ZIwq as:

ZIwq “

ż

Ω

EIwq px
1qdx1 “

ż

Ω

pαw ` βq2EIwp px
1qdx1

“ pαw ` βq2
ż

Ω

EIwp px
1qdx1. (31)

Therefore, we can rewrite (30) as:

EĨq
“

»

–

ż

pαw ` βqIppuq

pαw ` βq
b

ZIwp

gepx̄qdu

fi

fl

2

`

»

–

ż

pαw ` βqIppuq

pαw ` βq
b

ZIwp

gopx̄qdu

fi

fl

2

“

»

–

ż

Ippuq
b

ZIwp

gepx̄qdu

fi

fl

2

`

»

–

ż

Ippuq
b

ZIwp

gopx̄qdu

fi

fl

2

,

(32)

As desired, the energies of the sequences EĨp
and EĨq

are
equal, which can be seen by comparing (29) and (32).
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The ZIwp in (32) that remains after cancelling out the
temporal illumination variations depends on time w. This
may cause the trend of the energy function to change during
normalisation, which is prohibitive, as the tuning of the filter
parameters vg, θg was based on the energy function to follow
a specific trend. However, ZIwp shows little sensitivity to time
w (see Appendix), and therefore the trends of the normalised
and un-normalised energy functions are similar.

It must be noted that our normalisation scheme is most
applicable when local slices of a sequence are processed
and normalised independently from one another (similarly to
our pipeline in Section VI-A), particularly in the presence
of non-uniform illumination variations. Local processing and
illumination normalisation are also biologically plausible [48]
and are employed by state-of-the-art spatial [49] and spatio-
temporal [50] image processing pipelines.

VI. STATISTICAL MOTION MODELLING

Our goal is to obtain an explicit (rigid) motion transforma-
tion, but Gabor motion energy encodes motion implicitly. For
this reason, we estimate local MVs for each pixel and produce
a global motion estimation from all local MVs.

A. Statistical Local Motion Estimation

We aim to estimate a vector uij “∆ puij , vijq that represents
the motion of the pixel located at pi, jq between two discrete
images I0“∆ I0rx, ys, I1“

∆ I1rx, ys, where uij and vij describe
horizontal and vertical translation, respectively. To obtain the
estimation, ûij “∆ pûij , v̂ijq, we use the Gabor motion energy
around the pixel; specifically, the energy values across a PˆP -
sized area centred on the pixel. One can compute those energy
values after cropping the input images based on pi, jq. Let Iij
be Iij “

∆
pIij,0, Iij,1q where each Iij,t is a square image patch

with edge size P`2δP , cropped as Iij,trx, ys “∆ Itrx`i, y`js,
and δP is the spatial padding size required for convolution.
Energy is computed from a two-frame sequence, therefore we
set the temporal length of the Gabor filters also as two frames,
i.e. Tg “ 2. Then, the even- and odd-phased (discrete) Gabor
filters can also be represented as ge “ pge0, g

e
1q and go “

pgo0, g
o
1q, where each get , g

o
t is a 2D array. The discrete energy

can then be represented in terms of 2D convolutions as:

EĨij
rx, ys “

´

Tg´1
ÿ

t“0

1
b

ZItij

pIij,t ˚ g
e
Tg´1´tqrx, ys

¯2

`

´

Tg´1
ÿ

t“0

1
b

ZItij

pIij,t ˚ g
o
Tg´1´tqrx, ys

¯2

. (33)

Note that here energy is a 2D instead of a 3D array, as we
perform “valid” convolution (i.e. apply no zero-padding) [51],
and since both the images and filters are of temporal length 2,
the temporal length of convolution outputs is 2´2`1 “ 1 [51].

Since one Gabor filter pair pge, goq is tuned to a single ori-
entation and speed, the energy computed only from one filter
pair would not be sufficient to identify arbitrary motion [14].
Therefore, we construct and use a filter bank that comprises K
filter pairs, each tuned to a different orientation. We reduce the

Fig. 4. The structure of the neural network that is used for predicting local
motion θ from a feature vector Φ. The coefficients wp1qpq and wp2qpq represent
the weights contained in wp1q and wp2q, respectively.

dimensionality of energy output via mean pooling, which is a
biologically plausible [48] and computationally efficient [52]
way of reducing the dimensionality of Gabor filtering output.
Overall, we describe the motion of the pixel at pi, jq with one
feature vector Φij “ pφij1 , φ

ij
2 , . . . , φ

ij
Kq, where φijk denotes

the pooling output for the energy values computed with the
kth filter pair, Ek

Ĩij
rx, ys, as

φijk “
1

P 2

P`δP
ÿ

x,y“δP`1

Ek
Ĩij
rx, ys. (34)

In Section VII-B we discuss an efficient computation of φijk .
The critical question is how to estimate the motion vector

uij from a given Φij , i.e. how to model their relationship. We
use a model that learns the relationship from data. Specifically,
we use a neural network with one hidden layer that contains
H hidden nodes. At local level, we model motion with a
Euclidean transformation, which can be represented with four
parameters as θij “ pθij1 , θ

ij
2 , θ

ij
3 , θ

ij
4 q, and then compute ûij

by applying this Euclidean transformation to the central pixel
of the patch. The neural network equation can be denoted as:

θij “ ypΦij ; wp1q,wp2qq, (35)

where wp1q and wp2q are respectively the weights of the input
layer and the hidden layer, and the activation function of the
hidden layers, σp¨q, is a tanhp¨q function (see Fig. 4). Obtain-
ing training data to train this network is straightforward. To
create one training sample pΦn,θnq, we crop a square image
patch with edge size P`2δP from any image dataset, and then
perturb the patch by applying a random transformation θn.
We then obtain the features Φn from the pair that comprises
the original and perturbed image, using (34). In this process
we set δP “ P {2. Note that the perturbed image we create
may have blank regions near the image edges, due to the
transformation θn. The features computed through (34) ignore
the energy values across a margin of δP pixels, and therefore
are usually not affected by such blank regions.

B. Global Motion Estimation

To estimate the global motion between a template frame
I0 and a target frame I1, we use the iterative scheme il-
lustrated in Algorithm 1. At each iteration k, we estimate
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Algorithm 1: Global Motion Estimation
Input: I0, I1: template and target frames
Output: Ĥ´1: predicted projective transformation
Definitions: I3: 3ˆ 3 identity matrix

M,N : Width, height of input frames
r: Margin for discarded pixels, r “ δP ` rP {2s

d: Operator that warps I1 based on Ĥ

Ĥ Ð I3

for k Ð 1,Kmax do
Uk Ð

!

ûijk “ ypΦijq | pi, jq P
`

Nrr,M´rs ˆ Nrr,N´rs
˘

)

mk Ð RANSACpUkq
Ĥk Ð hpmkq

if ||Ĥk ´ I3||2 ă ε then
return

end if
I1 Ð Ĥ´1

k d I1
Ĥ Ð ĤkĤ

end for

local motion vectors ûij for all pixels pi, jq except those
that lie on a margin, and store them in a set Uk. Then, we
predict a projective transformation mk “ pm1,m2, . . . ,m8q

by applying least mean squares regression based on the local
motion vectors in Uk after eliminating outliers motion vectors
via RANSAC [16]. Next, we convert the transformation mk

into a homography matrix simply as:

Ĥk “ hpmkq “

»

–

m1 m2 m3

m4 m5 m6

m7 m8 1

fi

fl . (36)

We continue iterations until the element-wise L2 matrix norm
||Ĥk ´ I3||2 gets smaller than a convergence threshold ε, or
a maximal number of iterations Kmax is reached. To estimate
large-scale global motion efficiently, we apply Algorithm 1 in
a coarse-to-fine manner through a pyramid representation [40].

If Kmax is large enough, a sufficient condition for conver-
gence is that the error between the estimated and the actual
homography transformation, ||Ĥ ´ H||2, is reduced at each
iteration k, which implies that the MVs must be estimated
more accurately as k increases. In fact, unlike early iterations
that can accept larger errors in the estimation of MVs as long
as ||Ĥ ´H||2 decreases, only small errors are allowed near
convergence when the magnitude of MVs is small. In the next
section we analyse whether our MV estimation adheres to this
error profile by reporting variations in estimation performance
with respect to the magnitude of MVs.

VII. EXPERIMENTAL VALIDATION

In this section we evaluate the sensitivity of local MV
estimation to a number of parameters and compare our method
with other methods both in constant and changing illumination
conditions. We also evaluate the GME performance in the
presence of outlier motions (including barrel distortions and
local motions incongruent with global motion) and in the
presence of illumination variations by comparing our method

with various state-of-the-art GME methods. The source code
and data needed to reproduce experimental results for GME
are available at ftp://spit.eecs.qmul.ac.uk/pub/es/gme.zip.

A. Methods Under Comparison

We compare the local MV estimation performance of our
method with a block matching method (BM) [38], which is
typically used for coarse MV field estimation, and with an
optical flow method, which is used for dense MV (D-MV)
estimation [27]. We also aim to quantify if there is any benefit
to replacing the neural network with another regressor, and
compare the performance of the neural network (NN) with a
well-established regressor, namely, elastic net [53] (EN). For
BM we used the built-in block matching function in MATLAB.
This function originally outputs values at 1 pixel resolution;
we increased its resolution to 0.25 pixels by resizing the blocks
4 times prior to estimation. We implemented D-MV through
its original code [39].

We compare our overall GME performance with two
feature-based methods, one based on SURF [18] and one based
on MSER [54] features; two direct minimisation/maximisation
methods, namely the standard LK with inverse compositional
algorithm (IC-LK) [34] and a method based on maximising
gradient correlation coefficient (MGCC) [36]; and one dense
MV-based method [27]. When testing against illumination
variations, we additionally compare with two more methods
that are more robust against illumination variations: an LK
method that uses (spatial) Gabor filters (G-LK) [35] and a
robust FFT method (R-FFT) [29]. We implement SURF and
MSER using the functions provided in the Image Processing
toolbox of MATLAB. For IC-LK, MGCC and D-MV we use
the implementations provided by the authors. For RANSAC
estimation, which is needed by SURF, MSER and D-MV, we
use the geometric transformation estimation function of MAT-
LAB. For G-LK, we used the implementation provided for
comparison in [36], and for R-FFT we use the implementation
that was kindly provided by the authors of the technique.

B. Implementation and Parameters

Experiments are conducted on a workstation with an Intel
Xeon CPU (2.40GHz). We report results for two different
RANSAC implementations: our implementation and the de-
fault OpenCV implementation. The latter is faster, however,
based on our experimental observations, requires a higher rate
of inliers. We used our RANSAC implementation during the
PIE ([55]) experiments where inlier rates are lower due to
illumination variations. We trained the neural network using
NETLAB [56] and performed optimisation with conjugate
gradients. We implemented Algorithm 1 in C++, and used
summed-area tables [57] to compute Uk efficiently. Crop-
ping the input images for each MV from scratch and then
computing energy (i.e. as described in Section VI-A), may
be computationally costly. Instead, we can first compute the
convolutions on the entire images and then use the necessary
values for an MV at pi, jq as follows. For a filter g, the equality
pIij,t˚gqrx, ys “ pIt˚gqrx`i, y`js holds due to our definition
of Iij,t (Section VI-A) and the fact that translation commutes

ftp://spit.eecs.qmul.ac.uk/pub/es/gme.zip
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Fig. 5. Top: exemplar frames from the ego-centric camera videos. Bottom: exemplar frames from the PIE dataset with illumination variations.
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Fig. 6. Sensitivity of local motion estimation to (a) the number of hidden layers H , (b) patch size P , (c) and number of training samples Ntra.

with convolution. Let Axyt , B
xy
t be Axyt “

∆
pIt ˚g

e
Tg´1´tqrx, ys

and Bxyt “
∆
pIt ˚ g

o
Tg´1´tqrx, ys. Using the aforementioned

equality, we can perform the pooling in (34) as:

φij “
1

P 2

ÿ

x,y

»

—

–

¨

˝

Tg´1
ÿ

t“0

1
b

ZItij

Axyt

˛

‚

2

`

¨

˝

Tg´1
ÿ

t“0

1
b

ZItij

Bxyt

˛

‚

2
fi

ffi

fl

“

ř

x,y
pAxy0 q

2

P 2ZI0
ij

`

ř

x,y
pAxy1 q

2

P 2ZI1
ij

`

ř

x,y
pBxy0 q

2

P 2ZI0
ij

`

ř

x,y
pBxy1 q

2

P 2ZI1
ij

`
2

P 2
b

ZI0
ij
ZI1

ij

˜

ÿ

x,y

Axy0 Axy1 `
ÿ

x,y

Bxy0 Bxy1

¸

, (37)

where we dropped the dependence of φijk to k for clarity. The
sums in the right-hand-side run over px, yq P Nri`1,i`P s ˆ

Nrj`1,j`P s. After writing the sums as in (37), we can employ
summed-area tables, which enable the computation of each
sum with four instead of P 2 operations [57]. The integrals
(i.e. sums) required for ZI0

ij
and ZI1

ij
can also be computed

in a similar manner, once the summed-area tables of the static
energies, EI0 and EI1 , where I “∆ pI0, I1q, are pre-computed.

We use the same parameters in all experiments. We use
K “ 8 filter pairs tuned to orientations of 0˝, 45˝, . . . , 315˝

with filter speeds vg “ 1 and we estimate large-scale global
motion hierarchically at scales of 1/6, 1/4, 1/3, 1/2, 2/3, and
1/1. We set the number of maximal iterations as Kmax “ 5
per scale, and the convergence threshold to ε “ 10´5. Based
on the analysis in Section VII-C, we set Ntra, H and P as
Ntra “ 20000, H “ 8 and P “ 20.

C. Local Motion Estimation Performance

We evaluate local MV estimation performance on synthe-
sised MVs. For this purpose, we create sets of test samples I

that comprise Ntes pairs of 2P ˆ 2P -sized randomly cropped
patches Ii “ pIi, I

1
iq; that is, I “ tI1, I2, . . . , INtesu. The

patches I 1i and Ii differ by a random (Euclidean) motion
θi, which causes the centre of the first patch to move by
a translation ui “ pui, viq. The goal is to obtain accurate
predictions ûi “ pûi, v̂iq of the true motions ui. We evaluate
accuracy as the average root mean square (RMS) error ēRMS
between the predicted and the true motion vectors:

ēRMS “

Ntes
ÿ

i“1

a

pui ´ ûiq2 ` pvi ´ v̂iq2. (38)

To evaluate on constant illumination conditions, we crop
the patches from the INRIA holidays dataset [58], which
contains mostly natural images. For evaluation on changing
illumination conditions, we use the PIE dataset [55], which
contains facial sequences. The subjects of the dataset are
sitting in front of a camera, while the illumination conditions
are changed rapidly in a controlled manner (Fig. 5, bottom).

There are three parameters that have influence on the
performance of our local MV estimation method: the number
of hidden layers, H , the local patch size, P , and the number
of training samples, Ntra. We measure the sensitivity against
these parameters over a test set of Ntes “ 2000 samples. We
perform tests for each parameter separately, and keep the other
two parameters that are not tested fixed. When not tested, these
parameters are set to Ntra “ 20000, H “ 8 and P “ 20.

The three graphs in Fig. 6 illustrate how performance varies
with the variation in H , P and Ntra. For the number of hidden
layers, H , we see that the performance does not vary much for
values between 6 and 16, therefore we can pick a low value
such as 6 or 8 to keep the neural network’s complexity low. In
the rightmost graph we see that the number of training samples
Ntra does not have a significant effect on performance within
the range of 5,000-40,000. For the patch size P we notice
that there is a considerable improvement when we increase
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Fig. 7. Local MV estimation performance (a) on the INRIA dataset, which
contains no illumination variations; (b) on the PIE dataset, which does contain
illumination variations.

patch size from 5 to 15, and a slight improvement as we keep
increasing P further. However, increasing P too much reduces
the image area where local motion vectors can be extracted
(see r in Algorithm 1). Therefore, we limit the patch size to
P “ 20.

Fig. 7a compares the performance of our method with BM
and D-MV on MVs synthesised from the INRIA dataset. For
our method, we provide results for two different illumination
normalisation schemes: one where normalisation coefficients
are computed from one frame only (i.e. first frame) as in
(27), and another time-dependent one where normalisation
coefficients are computed from both frames as in (28). As
discussed in Section VI-B, our GME algorithm requires very
accurate MV estimation when the magnitude of an MV,
ρi “

∆
||ui||, is small, whereas errors may be tolerated when

ρi is large. Therefore, in Fig. 7a we show performance for
various magnitude ranges rρ´δρ, ρ`δρs separately by creating
Ntes “ 500 samples for each range. The x axis shows the
center of the range ρ, and we set the range radius as δρ “ 0.1.

Fig. 7a shows that our method (both with NN and EN)
yields higher errors than BM and D-MV for MVs with high
magnitude (e.g. when ρ ą 0.7). However, those errors pose
little problem for GME, as the error profile adheres to that
described in Section VI-B: Errors become lower as the motion
magnitude ρ becomes lower, and particularly low for ρ values
as small as 0.3 or 0.5. Normalising illumination with one
frame or with both frames makes little difference on the
INRIA dataset, which does not contain temporal illumina-
tion variations. Overall, the D-MV method achieves the best
performance, and its accuracy depends little on the motion
magnitude ρ. D-MV is an optical flow method; MVs are the
final output of the algorithm, therefore they are expected to
be accurate independently of the magnitude of the MVs. For
our method, MVs are intermediate quantities that serve for the
final GME output.

Fig. 7b shows the results of the same type of experiment for
the PIE dataset with illumination variations. As expected, the
simple BM method cannot perform reliably. However, D-MV

cannot perform very reliably either, even though this method
is computationally more complex and is designed to be partly
robust to illumination variations. Our method outperforms
other methods, particularly for small ρ values. Also, Fig. 7
suggests that, in the presence of illumination variations, using
both frames for contrast normalisation (i.e. time-dependent
normalisation) is consistently better than using a single frame.
Overall, the error trend of our method is similar to that in
Fig. 7a, i.e. errors get lower as ρ decreases. The decrease at
lower rate suggests that accurate GME would require more
iterations.

D. Global Motion Estimation Experiments

To evaluate GME performance in the presence of outlier
motions, we adopt a popular validation scheme [40] and
use test sequences that contain mostly camera motion in
addition to outlier local motions. The goal is to compensate
the global motion between pairs of consecutive images by
warping the second (target) frame in each pair onto the first
(template) frame. To evaluate performance in the presence
of barrel distortions, we use 3 sequences acquired during
a study where two human participants are involved in a
structured conversation driven by a small humanoid robot and
each participant wears an ego-centric camera placed on their
forehead [4]. We refer to these sequences as ego-centric1-
3. In addition to outlier local motions (e.g. moving robot,
people), these sequences have the challenge of high barrel
(lens) distortion, which is not possible to compensate with
homographic transformations. Unlike local motions, barrel
distortions produce systematic outliers, where all straight lines
are curved outward, and even more so near the edges of the
image — this effect gets worse as the global motion gets larger
and edges look more different. To test against local outlier
motions, we use widely-known MPEG-4 test sequences [8],
[22], [32], [22], namely, City, Coastguard, Flower, Foreman,
Mobile, Stefan, Tempete, Waterfall. The true global motion is
not known for any of those sequences, therefore we use an
indirect metric, namely the peak-signal-to-noise ratio (PSNR)
between the warped target and template frame, which gets
higher as the global motion is compensated with higher accu-
racy. PSNR results on some sequences can be misleadingly
low due to large outlier motions [22], therefore, for some
sequences we provide additional PSNR results by ignoring
the foreground object/person — this metric is also referred
to as background PSNR (BPSNR) [59]. We provide BPSNR
results for egocentric1–3 and for Stefan, Coastguard and
Foreman. Manually annotated foreground masks are provided
in supplementary material.

Table II shows the performance of all methods on the
egocentric1-3 and MPEG-4 sequences, and Fig. 8 shows exem-
plar difference images for several sequences — the difference
images show less variation when global motion is compensated
with higher accuracy. For the ego-centric sequences, we note
that the local and dense methods IC-LK, MGCC perform
generally well, but they are prone to be misled in the presence
of large barrel distortions or large outlier motions (Fig. 8b,c).
The feature-based SURF method performs also well and is
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Fig. 8. Exemplar frames from test sequences and the corresponding difference images obtained after global motion was compensated with each of the methods.
To enhance the interpretation of the difference images, we segmented out the largest moving foreground object from difference images manually and also
inverted the difference images in color. (a) Ego-centric1, the SURF method in this frame was affected by barrel distortions which caused higher noise near
the edges of the difference; (b) Ego-centric2, a scene with a large number of lines curved by barrel distortion; (c) Ego-centric3, a scene with barrel distortions
and large outlier motions; (d) Flower, a scene with elements of varying depth; (e) Coastguard, two boats are moving towards each other; (f) Stefan, a sequence
where the tennis player causes large outlier motions.

TABLE II
GLOBAL MOTION COMPENSATION PERFORMANCE IN TERMS OF PSNR
(THE HIGHER THE BETTER). BEST VALUES FOR EACH SEQUENCE ARE

TYPED IN BOLD. :BACKGROUND PSNR (BPSNR) VALUES.

SURF
[18]

MSER
[54]

IC-LK
[34]

MGCC
[28]

D-MV
[27]

Our
Work

Ego-centric1 30.57 30.22 30.59 30.26 30.09 30.61
Ego-centric1: 35.91 35.12 35.38 35.63 35.99 36.47
Ego-centric2 26.30 25.60 26.42 25.93 26.04 26.15
Ego-centric2: 30.04 29.19 29.58 29.83 30.43 30.66
Ego-centric3 28.67 27.89 28.72 28.22 28.31 28.74
Ego-centric3: 31.96 30.90 31.77 31.53 31.90 32.33
City 30.23 29.87 29.94 29.78 30.26 30.47
Coastguard 26.68 27.25 28.07 27.54 27.56 27.54
Coastguard: 27.66 28.51 29.70 29.94 30.06 30.03
Flower 27.01 26.53 26.72 26.32 25.67 25.85
Foreman 27.69 28.69 28.93 30.06 29.94 29.97
Foreman: 29.90 33.40 34.06 35.93 36.43 35.91
Mobile 25.01 25.41 25.71 25.71 25.85 25.85
Stefan 27.32 27.11 26.79 26.86 27.22 27.16
Stefan: 33.37 32.99 31.71 32.45 33.03 33.23
Tempete 27.80 27.41 27.85 27.86 27.86 27.86
Waterfall 38.25 36.78 37.94 38.43 38.43 38.45

generally not affected by local motions (caused by the robot or
by people). However, it degrades when the RANSAC estimator
is misled by salient features that are extracted from highly

curved edges (see Fig. 8a). The performance on ego-centric
sequences is better interpreted through BPSNR, which suggest
that our method performs best, followed by the D-MV method.
These methods have in common a RANSAC estimation that is
performed on a dense input, which is less likely to be misled
than the (sparse) feature-based methods.

On the MPEG-4 test sequences, feature-based methods, and
particularly SURF, perform well in sequences where there
are visually salient regions to estimate the global motion
from (e.g. Waterfall, Flower), even in the presence of large
outlier local motions (Mobile, Stefan). However, they may
degrade considerably when salient regions are concentrated on
regions of outlier motions (Coastguard, Foreman). IC-LK and
MGCC are less dependent on visual saliency. However, they
are occasionally affected by the amount of outlier motions,
particularly when they involve elements with rich texture such
as in Stefan. Moreover, these methods estimate only affine
transformations, and their motion compensation is limited
in sequences that undergo a projective transformation, such
as City. Overall, our method and D-MV have the highest
number of best or next-to-best PSNR results on MPEG-4
test sequences — the difference between the two methods
is marginal in most cases. The absence of visual saliency
affects less our method and D-MV than feature-based methods.
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TABLE III
GME ACCURACY ON THE PIE DATASET MEASURED AS AVERAGE MAE
(IN PIXELS) OVER ALL TEST SAMPLES (THE LOWER THE BETTER) AND
THE PERCENTAGE OF TEST SAMPLES WITH LESS THAN θ PIXELS (THE

HIGHER THE BETTER)

SURF MSER FFT IC-LK G-LK MGCC D-MV Our
Work

MAE 32.21 108.86 6.20 3.79 2.36 0.59 2.13 0.47
θ “ 0.25 0.00 0.00 5.25 2.50 4.25 25.75 3.75 47.25
θ “ 0.50 0.25 0.00 20.00 29.00 39.00 65.50 20.25 89.75
θ “ 1.00 1.75 1.25 59.75 61.00 74.00 91.00 57.00 94.25
θ “ 2.00 15.25 10.75 87.00 80.25 87.25 95.75 80.00 96.00
θ “ 3.00 28.25 22.25 95.00 86.75 90.00 98.00 86.50 96.75
θ “ 5.00 48.75 43.50 95.00 89.00 92.75 99.00 91.00 98.75

Moreover, our method and D-MV are less sensitive to outliers
and to perspective transformations than direct methods such
as LK and MGCC.

To evaluate GME performance in the presence of illumina-
tion variations, we use the PIE dataset. The local and global
illumination variations in the PIE dataset affect the background
and foreground (i.e. face) of the images differently, creating
challenging shadows and spurious motions (see Fig. 5). The
advantage of evaluation on PIE is that we can evaluate using a
direct metric. Because the subjects are sitting stably and there
is no camera motion, we can apply the global motion ourselves
in a controlled manner and then try to estimate this known
motion — an approach that was used with other datasets while
evaluating LK methods [36], [55], [42]. For each template
frame we define two canonical points2 [55], the leftmost and
rightmost point that sit in the vertical middle of the frame.
We perturb these points with a Gaussian noise with standard
deviation σ “ 3. This is a value where LK methods [34],
[35] and MGCC [36] generally converge, yet to ensure their
convergence, we run those methods with 60 iterations (i.e. the
double of what is used in the original papers). The canonical
versus perturbed points define a Euclidean transformation,
which is then applied to the target frame. The first evaluation
metric we use is the mean absolute error (MAE) in the
predicted locations of the two perturbed points. However,
MAE can be misleading if there are large errors in a small
number of samples. Therefore we use a second metric: The
ratio of samples whose MAE is smaller than a certain number
of pixels [60]. We test on the 400 pairs of frames, which are
obtained from all the frames of the first 20 subjects’ sequences.
We cropped the faces in these datasets to 200 ˆ 200 pixels
based on the facial landmark points provided with the dataset.

Table III shows the experimental results on the PIE dataset
both in terms of average MAE in all 400 pairs and in terms
of ratio of samples whose MAE is smaller than a certain
number of pixels. Feature-based methods degrade notably
as the number of matched features drops severely with the
illumination variations. R-FFT offers some robustness against
illumination variations by achieving less than 3 pixels MAE
in 95.00% of images, however, the ratio of estimations with
small errors (e.g. 1 pixel) is quite low. IC-LK and D-MV are

2The number of canonical points in other papers is typically 3, defining an
affine transformation. We pick only 2 points to be able to compare with the
Robust FFT method [29], which can model only Euclidean transformations.
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26%
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38%

20%

15%

26%

Fig. 9. Relative computational cost per iteration. Left: OpenCV’s RANSAC
implementation; right: our RANSAC implementation.

affected negatively by illumination variations and the usage of
spatial Gabor filters for LK (G-LK) provides only a limited
improvement over IC-LK. The two methods that emerge as
robust and accurate in the presence of illumination variations
are our method and MGCC. While MGCC achieves a higher
precision by registering 98.00% of the samples with less than
3 pixels error, our method stands out with a higher accuracy,
registering 89.75% of the images with less than 0.5 pixels
error.

E. Computational Cost

In Fig. 9 we show the average computation time per iteration
for several processing components, for GME on an image
sized 352ˆ288. One iteration takes 3.45 seconds on average
with OpenCV’s RANSAC implementation and 4.60 seconds
with our RANSAC implementation. If we exclude RANSAC,
the most time-consuming task is computing the convolutions
for Gabor motion energy (1.75 seconds), which is followed
by the neural network-based MV prediction (for all pixels
combined together, 0.94 seconds). The overall GME for all
iterations and scales (see Section VII-B) is 29.9 seconds on
average with OpenCV’s RANSAC implementation and 60.1
seconds with our RANSAC implementation.

VIII. CONCLUSION

We presented a global motion estimation (GME) scheme
whose key components are the biologically-inspired low-level
motion features and the usage of a statistical approach to
model the relationship between low-level motion features
and the corresponding motion vectors. We derived analytical
expressions of the spatio-temporal Gabor motion energy for a
moving line and we showed how to tune a spatio-temporal
Gabor filter to a line moving with a particular speed and
direction. Moreover, we proposed a normalisation scheme to
render the output of Gabor convolution robust to temporal
illumination variations.

By encoding motion with Gabor energy and estimating
motion vectors through statistical learning, we achieve state-
of-the-art GME accuracy in the presence of illumination varia-
tions, which are an open challenge for most GME approaches.

To reduce the computational cost of spatio-temporal Ga-
bor filters, the proposed scheme can be applied to sparse
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parts of images only, or efficient hardware solutions can
be employed [61]. Another solution can be searching for
efficient approximations of Gabor filters [62], in which case
the (illumination-normalised) Gabor motion energy equations
we provide in this paper can serve as a baseline to compare
the response of the approximated filters.

APPENDIX

We show that the ZIwp coefficient, which appears in (32)
after illumination is cancelled out, changes slowly with time
w, and therefore causes little variation in the trend of the
signal that we aim to measure (i.e. motion energy). This
is important, as it ensures that during normalisation we are
not altering the characteristic behaviour of motion energy,
which was discussed throughout Section IV. We analyse the
sensitivity of ZIt to t on a sequence I where there is a global
translation and no illumination variations — a sequence that
adheres to the definition of Ip in Section V-B. We show that
ZIt varies slowly with time by showing that the L1 distance
between the coefficients of two frames, |ZItm´ZItn |, is small.
To compute ZItm and ZItn , we first need to obtain the static
sequences Itm and Itn . Since the only difference between the
frames of I is a global translation, the static sequences are
translated versions of each other (similarly to Fig. 3b,c), that
is, Itmpxq “ Itnpx` τ q for some τ “ pτx, τy, 0q.

To compute ZItm as in (25), we first need to compute
the energy, which is based on convolution. Let hnpx, gq “∆

pItn ˚ gqpxq and hmpx, gq “
∆
pItm ˚ gqpxq. Since translation

commutes with convolution, hm can be rewritten as:

hmpx, gq “ hnpx` τ , gq. (39)

The energies EItn pxq and EItm pxq can then be computed as:

EItn pxq “ phnpx, g
eqq

2
` phnpx, g

oqq
2
, (40)

EItm pxq “ phmpx, g
eqq

2
` phmpx, g

oqq
2

“phnpx` τ , geqq
2
` phnpx` τ , goqq

2

“EItn px` τ q. (41)

Then, for a volume Ω “
∆ X ˆ Y ˆ T “∆ px0, xf q ˆ py0, yf q ˆ

pt0, tf q, the coefficients ZItn and ZItm can be computed as:

ZItn “

ż

Ω

EItn px
1qdx1, (42)

ZItm “

ż

Ω

EItm px
1qdx1 “

ż

Ω

EItn px
1 ` τqdx1. (43)

The distance |ZItn ´ZItm | can be rewritten with a change
of variable in the integral of ZItm . Let X 1 “∆ px0`τx, xf`τxq,
Y 1 “∆ py0 ` τy, yf ` τyq and Ω1 “∆ X 1 ˆ Y 1 ˆ T . Then, it can
be shown that:

|ZItn ´ ZItm | “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Ω

EItn px
1qdx1 ´

ż

Ω1

EItn px
1qdx1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

. (44)

We can interpret (44) better by excluding the region of
intersection, Ω X Ω1: This region will have no contribution
to the distance in (44), as the integrands of the two integrals
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Fig. 10. Illustration which depicts that the ZIt coefficient shows small
variation over time (left), and that this variation causes a negligible change in
the trend of the motion energy function. Results are obtained with two pairs
of filters tuned to different orientations θg but to a common speed vg “ 1.

in (44) are equal, and their difference would yield zero when
the integration is done over the same region. The non-zero
contribution to (44) can only come from the non-intersecting
regions: ΩzΩ1 and Ω1zΩ. These regions depend on the amount
of translation: if translation is small, then ΩzΩ1 and Ω1zΩ
become small, and therefore |ZItn´ZItm | is likely to be small.

In Fig. 10 we show quantitatively how two successive
coefficients ZI0 , ZI1 change with respect to the amount of
translation. To this end, we crop N “ 1000 image samples,
tInu

N
n“1, each of size 2Pˆ2P , from randomly picked regions

in the first frames of the MPEG-4 sequences (Section VII-D).
We synthesize two-frame sequences such as In,τ “ pIn, I

1
nq,

where In denotes a sample and I 1n denotes the same sample af-
ter being translated horizontally by τ pixels. We synthesise 10
sequences per sample, In,τ0 , In,τ1 , . . . , In,τ9 , such as τi “ i{2.
We can measure how ZItn,τ

varies between the two frames of
In,τ through the ratio ZI1

n,τ
{ZI0

n,τ
. Specifically, we use the

average of this ratio over all sequences,

δZ̄τ “
∆

N
ÿ

n“1

ZI1
n,τ

ZI0
n,τ

. (45)

In Fig. 10 (left) we show how δZ̄τ changes with τ , for
coefficients computed with two filter pairs tuned to different
orientations. We note that δZ̄τ generally deviates from 1
proportionally to τ , which is in accordance with the conclusion
we reached after (44). However, this increase is relatively
small; the deviation in δZ̄τ never exceeds 2.5%, which shows
that ZItn,τ

has little sensitivity to the amount of translation, τ .
We now analyse whether this increase is significant: We

illustrate how normalisation with the time-dependent ZIt coef-
ficients changes the trend of the signal that we aim to measure
— the Gabor motion energy. For this purpose, we compute
how the pooling output of the sequences varies with τ :

δφ̄τ “
∆

N
ÿ

n“1

φn,τ
φn,τ0

, (46)

where φn,τ is the output of mean pooling of the normalised
energy of In,τ . We compare δφ̄τ with the original (i.e. un-
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normalised) energy, by computing the following ratio:

δψ̄τ “
∆

N
ÿ

n“1

ψn,τ
ψn,τ0

, (47)

where ψn,τ denotes a pooling output computed from the un-
normalised energy. Note that δφ̄τ and δψ̄τ can be compared
fairly, because both are divided by the pooling output of the
non-moving sequence. Ideally, we would like δψ̄τ and δφ̄τ to
be the same for any τ value.

Finally, in Fig. 10 (right) we compare δφ̄τ with δψ̄τ :
The difference between δφ̄τ and δψ̄τ is small even for the
largest τ value. It is therefore reasonable to assume that the
ZIt coefficients cause a negligible change in the trend of
the energy, given that the sequence they are computed from
contains no illumination variations.

REFERENCES

[1] A. Gil, O. M. Mozos, M. Ballesta, and O. Reinoso, “A comparative
evaluation of interest point detectors and local descriptors for visual
slam,” Machine Vision and Applications, vol. 21, no. 6, pp. 905–920,
2010.

[2] D. Floreano, J.-C. Zufferey, M. V. Srinivasan, and C. Ellington, Flying
insects and robots. Springer, 2009.

[3] A. Eliazar and R. Parr, “Dp-slam: Fast, robust simultaneous localization
and mapping without predetermined landmarks,” in IJCAI, vol. 3, 2003,
pp. 1135–1142.

[4] O. Celiktutan and H. Gunes, “Computational analysis of human-robot
interactions through first-person vision: Personality and interaction ex-
perience,” in Proc. IEEE Int’l Symp. on Robot and Human interactive
Communication, 2015.

[5] H. Uemura, S. Ishikawa, and K. Mikolajczyk, “Feature tracking and
motion compensation for action recognition.” in Proc. British Machine
Vision Conf., 2008, pp. 1–10.

[6] E. Sariyanidi, H. Gunes, and A. Cavallaro, “Probabilistic temporal
subpixel registration for facial expression analysis,” in Proc. Asian Conf.
Computer Vision, 2014.

[7] D. Perperidis, R. H. Mohiaddin, and D. Rueckert, “Spatio-temporal
free-form registration of cardiac MR image sequences,” Medical Image
Analysis, vol. 9, no. 5, pp. 441 – 456, 2005.

[8] B. Qi, M. Ghazal, and A. Amer, “Robust global motion estimation ori-
ented to video object segmentation,” IEEE Trans. on Image Processing,
vol. 17, no. 6, pp. 958–967, 2008.

[9] H.-Y. Wu, M. Rubinstein, E. Shih, J. V. Guttag, F. Durand, and W. T.
Freeman, “Eulerian video magnification for revealing subtle changes in
the world.” ACM Trans. Graph., vol. 31, no. 4, p. 65, 2012.

[10] D. Sun, S. Roth, and M. Black, “A quantitative analysis of current
practices in optical flow estimation and the principles behind them,”
Int’l J. of Computer Vision, vol. 106, no. 2, pp. 115–137, 2014.

[11] Y. Furukawa, A. Sethi, J. Ponce, and D. Kriegman, “Structure and
motion from images of smooth textureless objects,” in Proc. European
Conf. on Computer Vision. Springer, 2004, pp. 287–298.

[12] Z. Ambadar, J. W. Schooler, and J. Cohn, “Deciphering the enigmatic
face: The importance of facial dynamics in interpreting subtle facial
expressions,” Psychological Science, vol. 16, no. 5, pp. 403–410, 2005.

[13] B. A. Wandell, Foundations of vision. Sinauer Associates, 1995.
[14] E. H. Adelson and J. R. Bergen, “Spatio-temporal energy models for the

perception of motion,” The J. of the Optical Society of America, vol. 2,
no. 2, pp. 284–299, 1985.

[15] X. Xiong and K. Qin, “Linearly estimating all parameters of affine
motion using Radon transform,” IEEE Trans. on Image Processing,
vol. 23, no. 10, pp. 4311–4321, Oct 2014.

[16] R. Hartley and A. Zisserman, Multiple view geometry in computer vision.
Cambridge university press, 2003.

[17] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
Int’l J. of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.

[18] H. Bay, T. Tuytelaars, and L. Van Gool, “SURF: Speeded up robust
features,” in Proc. European Conf. Computer Vision, 2006, pp. 404–
417.

[19] M. Okade and P. K. Biswas, “Video stabilization using maximally stable
extremal region features,” Multimedia Tools and Applications, vol. 68,
no. 3, pp. 947–968, 2014.

[20] Y. G. Ryu and M. J. Chung, “Robust online digital image stabilization
based on point-feature trajectory without accumulative global motion
estimation,” IEEE Signal Processing Letters, vol. 19, no. 4, pp. 223–
226, 2012.
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