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Abstract—Local image features are generally robust to dif-
ferent geometric and photometric transformations on planar
surfaces or under narrow baseline views. However, the match-
ing performance decreases considerably across cameras with
unknown poses separated by a wide baseline. To address this
problem, we accumulate temporal information within each view
by tracking local binary features, which encode intensity com-
parisons of pixel pairs in an image patch. We then encode the
spatio-temporal features into fixed-length binary descriptors by
selecting temporally dominant binary values. We complement
the descriptor with a binary vector that identifies intensity
comparisons that are temporally unstable. Finally, we use this
additional vector to ignore the corresponding binary values in the
fixed-length binary descriptor when matching the features across
cameras. We analyse the performance of the proposed approach
and compare it with baselines.

Index Terms—Spatio-temporal features, ORB, Feature match-
ing

I. INTRODUCTION

Local spatio-temporal features are used for object and scene

recognition, human action recognition [1][2], video match-

ing and retrieval [3], and wide baseline reconstruction [4].

Spatio-temporal feature detectors localise interest points in

spatial, temporal, and scale domains [1][5]. Spatio-temporal

descriptors encode appearance, motion (e.g. optical flow), and

statistics (e.g. image gradients) of the spatial and temporal

neighbours of the interest points [1].

In applications such as visual Simultaneous Localisation and

Mapping (SLAM) [6][7][8][9], Structure from Motion [10] or

stereo reconstruction [4], local features are extracted indepen-

dently for each image and matched/tracked in multiple views.

Online approaches such as ORB-SLAM [6] obtain spatio-

temporal features by tracking local binary features (e.g. ORB

[11]). ORB-SLAM reduces the spatio-temporal feature to a

compact representation by selecting the descriptor with the

least median distance from all others [6].

View matching is very challenging across freely moving

cameras that observe the scene from different viewpoints.

The feature similarity normally decreases with the increase of

viewpoint, scale, and illumination changes. Moreover, features

visible in one view may be occluded in another view, thus

leading to matching ambiguities.

In this paper we investigate the problem of extracting and

matching local spatio-temporal descriptors with uncalibrated

and unsynchronised cameras under large viewpoint changes.

We propose a spatio-temporal descriptor for feature point

trajectories (tracklets) that captures the temporal changes of an

interest point. We extract a sequence of ORB [11] descriptors

and temporally pool the sequence to a compact fixed-length

binary descriptor of dominant values. We also extract a second

descriptor that discriminates temporally unstable binary tests

and acts as a selector of the pooled descriptor for feature

matching.

This paper is organised as follows. Section II reviews

spatio-temporal detectors and descriptors as well as spatio-

temporal features for 3D reconstruction. Section III describes

the proposed spatio-temporal descriptor, its reduction, and the

cross-view matching. Section IV discusses the experimental

results. Finally, in Section V we draw conclusions.

II. BACKGROUND

In this section we briefly overview spatio-temporal detectors

and descriptors, and we focus in particular on binary features

for real-time applications.

Spatio-temporal detectors include Harris3D [5], Cuboid

[12], Hessian [13], and dense sampling [1]. These detectors

find space-time interest points given by local maxima of

a response function, such as the Harris response [14] for

Harris3D, the Gabor filters-based response for Cuboid, and the

Hessian saliency measures for Hessian. Harris3D and Hessian

are an extension of the space-time domain of the Harris [14]

and SURF [15] detectors. All these detectors also consider

the scale for both spatial and temporal domains to detect

the interest points. Dense sampling does not search for local

maxima of a response function and defines the location of the

interest points in a regular 5-dimensional grid, which accounts

for space, time, spatial scale and temporal scale, with a 50%

overlap between volumes.

Spatio-temporal descriptors are 3D patches surrounding an

interest point and divide the volume into smaller volumetric

cells. Examples include Cuboid [12], HOG/HOF [16], HOG3D

[17], Extended SURF (eSURF) [13], and 3D-SIFT [18].

Cuboid computes the gradient for each pixel followed by

Principal Component Analysis to reduce the dimension of the

feature vector. HOG/HOF computes normalised histograms of

spatial gradient and normalised histograms of optical flow with

a fixed number of bins and concatenates them to form a single



feature vector. 3D-SIFT and HOG3D extend to the spatio-

temporal domain the quantisation of the histogram of gradients

used in SIFT [19]. 3D-SIFT represents the gradients in polar

coordinates and quantises them in histograms by meridians and

parallels. This solution leads to singularity problems near the

poles [17]. HOG3D overcomes this issue by using polyhedrons

and projections of the gradient vectors onto the axes that

connect the centre of the polyhedron to the centre of each face

of the polyhedron. eSURF extends the SURF [15] descriptor

by representing each cell of the 3D patch with a weighted

sum of uniformly sampled responses of Haar wavelets. All

these approaches use a fixed volume to extract the descriptor

for a given video, thus making the matching across different

viewpoints a difficult problem.

Daisy-3D [4] is a spatio-temporal description for dense

3D reconstruction with a wide baseline stereo camera in

the presence of non-rigid objects and occlusions. Daisy-3D

captures the temporal evolution of the spatial structure of an

interest point by tracking dense 2D Daisy features [20] with

optical flow priors, and concatenates the temporal descriptors.

Spatio-temporal features are then matched between cameras

by computing an average distance of sub-descriptors within a

small window, followed by a global optimisation to enforce

spatio-temporal consistency for depth estimation. The dimen-

sion of the temporal descriptors is large and therefore the

Daisy-3D matching is computationally expensive. Moreover,

to deal with dynamic objects in the scene, the Daisy-3D

matching assumes synchronised cameras.

To obtain spatio-temporal features, most online approaches

for self-localisation and 3D reconstruction rely on the ex-

traction and tracking of local image features, such as Scale

Invariant Feature Transform (SIFT) [19], Speeded Up Robust

Features (SURF) [15], or Binary Robust Invariant Elementary

Features (BRIEF) [21].

Binary features are preferred for real-time applications

because of their extraction and matching efficiency. Examples

of binary features include Oriented FAST and Rotated BRIEF

(ORB) [11], Binary Robust Invariant Scale Key-point (BRISK)

[22], or Fast REtinA Keypoint (FREAK) [23]. Binary features

describe a small patch around an interest point with compar-

isons of intensity values of pixel pairs of a sampling pattern.

The sampling pattern is obtained either in a deterministic way

[22], in a probabilistic way [21], or through learning [11][23].

ORB features are more compact, faster to extract and can

achieve a good accuracy in image feature matching bench-

marks compared to the more complex SIFT features [24][6].

For this reason, ORB features are used in several pipelines,

such as ORB-SLAM [6] and the Multi-UAV Collaborative

SLAM [9]. Nevertheless, their performance decreases under

severe geometric changes, such as scale and viewpoint, which

typically occur when multiple cameras move freely.

III. SPATIO-TEMPORAL DESCRIPTOR AND MATCHING

A. Localisation and descriptor extraction

Let Ik be a (gray-scale) frame at time k captured by an

uncalibrated and moving camera with unknown poses. We

apply the FAST corner detector [25] in each Ik and retain

the F features with the highest Harris response [14], which

are at feature locations {x1,k, . . . ,xf,k, . . . ,xF,k}.

After smoothing Ik with a 2D Gaussian filter of size W = 7
and standard deviation σ = 2, we extract a descriptor dp for

each feature location using the ORB [11] sampling pattern on

a G × G patch p = ρ(Ik,xf,k, G) centred at each feature

location xf,k:

dp = [τp(u1,v1), . . . , τp(uq,vq), . . . , τp(u256,v256)], (1)

where uq and vq are the positions of each pixel pair defined

by the sampling pattern S, with q = 1, ..., 256. The sampling

pattern S consists of learnt pixel pairs with high variance and

low correlation in their binary derivative [11].

The function τp(·, ·) is a binary test on the intensity values

p(uq) and p(vq) in patch p of each pixel pair uq and vq of

the sampling pattern:

τp(uq,vq) =

{

1 if p(uq) < p(vq),

0 otherwise.
(2)

To account for in-plane rotations, we compute the orien-

tation angle θp of the patch with respect to its centre of

mass as defined by the intensity centroid method [26]. After

applying the rotation R(θp) ∈ SO(2) to the sampling pattern

S: Sp = R(θp)S, the descriptor is (x, θ,d)f,k, which encodes

the location, x, orientation, θ, and ORB descriptor d of the

local image feature at frame k.

B. Descriptor tracking and reduction

We track the features between frame Ik and Ik−1 by

matching their descriptors with a nearest neighbour approach

followed by a validation strategy to allow only one-to-one

matches. For each feature from frame k we select the three

closest features in frame k − 1 by using as dissimilarity

measure the Hamming distance: df,k⊕dg,k−1, where ⊕ is the

bit-wise XOR operator. After ranking all candidate matches

according to their Hamming distance, we discard matches

whose feature in Ik are outside a gate of radius r = 10 pixels

(as in the KLT tracker [27]) of the feature in Ik−1. We also

discard matches with a feature with higher similarity in another

match.

The resulting spatio-temporal feature is Ti =

{(x, θ,d)i,k}
kil

k=ki1

, where ki1 and kil are the first and

last frames where the feature is detected (see Fig. 1). The

sequence of image locations {xki1
, . . . ,xkil

} denotes the

trajectory (or tracklet) of the spatio-temporal feature, with

length Li = kil − ki1 . The spatio-temporal descriptor,

di ∈ {0, 1}
Li×256

is the temporal concatenation of the ORB

descriptors: di = [di,ki1
, . . . ,di,kil

].

We reduce di to a fixed-length descriptor zi ∈ {0, 1}
256

with zi = [z1,i, . . . , zq,i, . . . , z256,i] by accumulating the

binary test values over time (pooling) and applying a threshold

to determine the final binary test value (voting),

zq,i =

{

1 if 1
Li

〈dq,i,1〉 > 0.5,

0 otherwise,
(3)



138◦ 147◦ 155◦ 163◦ 174◦ 168◦ 183◦

127◦ 130◦ 127◦ 137◦ 140◦ 145◦ 156◦ 166◦ 174◦ 169◦ 173◦ 183◦

Fig. 1. On top, sample patch orientation changes from frame 7 to frame 20 (from left to right) for the tracked ORB descriptor in one camera (first row) and
the corresponding tracked ORB descriptor in an another camera (second row). For each patch we show its orientation in degrees and 3 sample rods (red, cyan,
yellow) from the ORB sampling pattern. At the bottom, the corresponding temporal ORB descriptors (differently from the patches, time is in a top-down
representation), where we can see that some binary tests remain mostly stable on the vertical signals (black is a 0 and white is a 1).

where dq,i ∈ {0, 1}
Li is the vector containing the temporal

values of the binary test q, 〈·, ·〉 is the (logical) dot product

and 0.5 is the prior probability of the binary test being 1.

To account for noise in the temporal matching caused e.g. by

photometric changes or image blur, we allow some variations

in the binary test outcome, at a rate lower than 20% of the

length of the spatio-temporal feature. We therefore compute

a second descriptor, d′

i ∈ {0, 1}
(Li−1)×256

, that captures the

temporal changes of the binary tests in di and contains the bit-

wise XOR of two consecutive ORB descriptors. We reduce d′

i

to mi ∈ {0, 1}
256

with mi = [m1,i, . . . ,mq,i, . . . ,m256,i] that

contains the stability information of zi:

mq,i =

{

1 if 1
Li−1 〈d

′

q,i,1〉 ≤ 0.2,

0 otherwise.
(4)

C. Cross-view matching

Let i be the index of a spatio-temporal feature in one view

(zi) and j the index of a spatio-temporal feature in another

view (zj). To improve the feature matching across views,

we remove temporally unstable binary tests of zi and zj by

applying in turn the additional descriptors mi and mj to

the XOR operation between zi and zj through the weighted

Hamming distance [28].

Let Mi = 〈mi,1〉 be the number of stable binary tests

for zi and Mj for zj . Let 〈mi, zi ⊕ zj〉 be the masked

Hamming distance using only mi. We compute the final

dissimilarity measure between two descriptors as a weighted

linear combination of two masked Hamming distances:

h(i, j) =
Mi〈mi, zi ⊕ zj〉+Mj〈mj , zi ⊕ zj〉

Mi +Mj

. (5)

The set of putative matches is therefore determined by a

similarity matching strategy such as threshold-based or nearest

neighbour [29]. The ratio test between the distance of the

first and second nearest neighbours can also be computed to

remove possible ambiguities [19].

IV. EXPERIMENTS

A. Experimental setup

We compare ST-ORB, P-ST-ORB, Mask-P-ST-ORB, and

LMED. ST-ORB corresponds to the high-dimensional, tempo-

rally concatenated ORB descriptor, di. P-ST-ORB corresponds

to the reduced binary descriptor zi, while Mask-P-ST-ORB

complements P-ST-ORB with mi. LMED is proposed within

ORB-SLAM [6] and selects the single ORB descriptor within

ST-ORB with the least median Hamming distance with respect

to all the other single ORB descriptors. Even if LMED was

proposed for tracking ORB features with a single camera, we

analyse here its performance for cross-view matching.

To extract ORB descriptors [11] we use their OpenCV 3.3

implementation with default parameters: the FAST threshold

is 20, the number of features is F = 500, and the patch size

is G = 31. Moreover, we set the number of scales to 1.

We use the most suitable dissimilarity measure for each

descriptor when matching features. For ST-ORB, we compute

the Hamming distance of each pair of single ORB descriptors

between di and dj . Then we use the minimum among all

Hamming distances as dissimilarity measure between the two

ST-ORB descriptors. For P-ST-ORB and LMED, we use the

Hamming distance. For Mask-P-ST-ORB, we use the weighted

Hamming distance (see Eq. (5)).



B. Dataset

We use images from three datasets: coslam courtyard,

freiburg office and freiburg desk. Fig. 2 shows five frames

for each camera and for each dataset.

The data of coslam courtyard1 [30] are four videos

recorded with a hand-held camera in a university courtyard.

Starting from a similar position in front of a panel, each video

was acquired by moving the camera around the area with

different paths and returning to the initial position at the end of

the recording. From the first and fourth sequences, we select

the first 50 frames after sub-sampling the videos from 50 to 5

fps. As there is no camera calibration data provided with the

dataset, we evaluate the methods only qualitatively.

For quantitative evaluation with ground-truth data, we use

the TUM-RGB-D SLAM dataset [31] that contains monocular

sequences acquired indoors with a Kinect. The Kinect was

either handheld or mounted on a robot. Ground-truth camera

poses were acquired with a motion capture system. From

the dataset, we select two sequences with enough texture for

detecting and tracking features, and with loop closures or

different movements of the camera around the same scene:

freiburg office and freiburg desk. For each sequence, we then

select two portions of 50 frames with non-overlapping frames

to simulate the motion of two cameras looking at the same por-

tion of the scene from different viewpoints. For freiburg office,

we select the frames from 114 to 163 and from 2305 to 2354.

The scenario consists of two cameras moving slowly around

a cluttered desk and without strong viewpoint changes. For

freiburg desk, we select the frames from 97 to 147 and from

390 to 340. The scenario consists of two cameras moving in

opposite directions around an office desk with more severe

changes in scale and viewpoint. Note that some images in the

datasets are affected by blur.

C. Performance evaluation

Inspired by [29], we evaluate the spatio-temporal feature

matching by exploiting the depth images and ground-truth

poses provided with the TUM-RGB-D SLAM dataset.

Given two or more sequences acquired with an RGB-D

camera, we relate each RGB pixel to its corresponding depth

pixel. Using projective geometry [32], we reconstruct the 3D

structure of the scene in a common reference system, as the

ground-truth poses are provided by a motion capture system.

We can then determine spatio-temporal features for each video

stream as well as ground-truth correspondences2.

For each spatio-temporal feature Ti, we compute a 3D loca-

tion Xi as the median of the set of 3D points estimated from

the back-projection of the image locations
{

xi,ki1
, . . . ,xi,kil

}

and properly scale them using the associated values in the

depth images. The median helps to remove false 3D esti-

mations caused by noise or errors in the tracking of the

1drone.sjtu.edu.cn/dpzou/project/coslam.php, accessed: March 2018
2Given different sampling rates for RGB and depth, we consider the same

depth image for two RGB images that are temporarily the closest to the depth
image.

coslam courtyard

freiburg office

freiburg desk

Fig. 2. Frames 0, 10, 20, 30, and 40 (from left to right) of the two
camera sequences for the coslam courtyard (top), freiburg office (middle)
and freiburg desk (bottom) datasets.

spatio-temporal features. After obtaining a set of reconstructed

3D points for each video stream, we apply a brute force

approach between the two sets and we then define the ground-

truth correspondences as the set of all 3D point pairs whose

Euclidean distance is lower than 3 cm.

Given the set of matches with a sufficiently high similarity

(putative matches), we define a correct match as the tracklet

pair that is also a ground-truth correspondence. Using the

ground-truth correspondences, putative matches and correct

matches, we compute precision, recall, F-score, and matching

score (as in [29]). Precision is the ratio between the number of

correct matches and the total number of matches. Recall is the

ratio between the number of correct matches and the number of

ground-truth correspondences. F-score= 2 Precision×Recall
Precision+Recall

is the

harmonic mean between precision and recall. The matching

score is the ratio between the number of correct matches and

the minimum between the number of tracklets in one view and

the other view.

D. Results on the outdoor dataset

For the coslam courtyard dataset, we consider the nearest

neighbour with ratio test as similarity matching strategy. For

each spatio-temporal descriptor in the second camera, we

search for the two nearest descriptors in the first camera, and

we select the match only if the distance ratio of two nearest

neighbours is below a threshold (we use the value 0.8 as

in [24]). As there are fewer than 100 matches, we manually

annotate true and false positives and we report the results in

Tab. I. The number of spatio-temporal features estimated is

200 for the first camera and 343 for the second camera. The



Fig. 3. Example of true matches and false matches with the Mask-P-ST-ORB
and with Hamming distance lower than 50. Notice the different length of the
temporal patches. First match (true positive): first tracklet from frame 15 to 21
and second tracklet from frame 8 to frame 19. Second match (true positive):
first tracklet from frame 37 to 47 and second tracklet from frame 41 to frame
45. Third match (false positive): first tracklet from frame 43 to 47 and second
tracklet from frame 46 to frame 50, Hamming distance equal to 38. Fourth
match (false positive): first tracklet from frame 10 to 15 and second tracklet
from frame 22 to frame 26, Hamming distance equal to 46.

number of matches estimated by each method is similar to each

other, but LMED finds much fewer true positives than the other

approaches. We can see that Mask-P-ST-ORB can achieve

and slightly outperform the performance of the exhaustive ST-

ORB. Fig. 3 shows few examples of true and false matches

with a Hamming distance lower than 50 using Mask-P-ST-

ORB. Even if true positives are well matched, we can still see

the limitations of the spatio-temporal descriptor that hardily

discriminates the pavement from the leaves only based on the

intensities (fourth example at the bottom of Fig. 3).

E. Results with synthetic tracklets

For the freiburg office and freiburg desk datasets, we ana-

lyse a set of ‘synthetic’ tracklets for each video stream to

reduce possible errors in the extraction of the spatio-temporal

features and focus the evaluation mainly on the cross-view

matching. The ‘synthetic’ tracklets are generated as follows.

For each camera and for each frame, we detect FAST [25]

corner points and we back-project each point xf,k to its

corresponding 3D point Xf,k ∈ R
3 using the associated depth

value sf,k, the camera pose Ck ∈ SE(3) for frame k, and the

camera calibration matrix K,

Xf,k = π−1(xf,k,Ck,K, sf,k), (6)

where π(·) : R3 → R
2 is the projective transformation of a

pinhole camera model [32]. The camera calibration matrix K

contains the intrinsic parameters, such as the focal length and

the principal point.

As the back-projection of the feature locations is inde-

pendent for each frame, there will be duplicated 3D points.

Starting from the first 3D point, we therefore remove all those

TABLE I
MATCHING RESULTS ON THE coslam courtyard DATASET USING THE

NEAREST NEIGHBOUR WITH RATIO TEST MATCHING STRATEGY.
GROUND-TRUTH IS NOT AVAILABLE AND WE MANUALLY ANNOTATE TRUE

AND FALSE POSITIVES. TP: TRUE POSITIVES.

Method # Matches # TP Precision

ST-ORB 67 37 .55
LMED 51 17 .33
P-ST-ORB 64 36 .56
Mask-P-ST-ORB 56 32 .57

successive 3D points whose distance is lower than 2 cm from

the candidate point until we obtain a set of unique 3D points.

To generate the tracklets, we then project each 3D point in

each frame of each camera. If the image point is within the

image bounds, we validate which of the four neighbour pixels

after approximation of the image point coordinates is closer

to the 3D point by back-projecting each pixel again in 3D:

‖π−1 (π(Xf ,Ck,K), sf,k)−Xf‖ < 0.02. (7)

If none of the four pixels passes the validation test, the

visibility of the 3D point in frame k is set to 0. This means

that either that 3D point is occluded or the estimated depth

value was inaccurate. Moreover, we allow only image points

that have a positive Harris response [14] to avoid flat areas or

points along an edge. As last step, we accept valid tracklets

only if the number of visible image points is greater than four

in at least either of the two video streams. This procedure

attempts to make the synthetic tracklets as close as possible

to the real tracklets, removing possible tracking errors and/or

splitting single tracklets in multiple instances.

We evaluate the methods with the generated ‘synthetic’

tracklets on the freiburg desk. Fig. 4 shows the distributions

of the Hamming distance for true and false positives for

each method3. The methods under analysis do not easily

discriminate true and false positives as viewpoint and scale

changes are especially challenging in this scenario. Moreover,

there are several repetitive patterns (e.g. on the keyboard)

that create ambiguities in finding correct correspondences.

Nevertheless, there are also true positives whose appearance

are not so similar, making the match hard to estimate.

Tab. II and Fig. 5 show the results of the methods by

varying the threshold on the Hamming distance from 0 to

128 and also by varying the number of matches from 0 to

5000. We can see that ST-ORB achieves the best performance

because of the exhaustive matching strategy that can find

the single ORB descriptors with the most similar appearance.

Mask-P-ST-ORB outperforms P-ST-ORB and LMED in terms

of recall, however it has a high number of false positives,

showing that the proposed descriptor is not discriminative

enough. Nevertheless, also ST-ORB and P-ST-ORB become

less accurate when increasing the threshold of the Hamming

distance.

3A similar behaviour was presented in BRIEF [21] on a planar scene with
increasing viewpoint change.



TABLE II
NUMBER OF TRUE POSITIVES (TP), NUMBER OF FALSE POSITIVES (FP),
PRECISION (P), RECALL (R), F-SCORE (F) AND MATCHING SCORE (MS)

FOR freiburg desk AT DIFFERENT HAMMING DISTANCE (HD)
THRESHOLDS. THE NUMBER OF TRACKLETS IS 2516 IN CAMERA a AND

3308 IN CAMERA b. THE NUMBER OF GROUND-TRUTH

CORRESPONDENCES IS 2447. TRACKLETS ARE GENERATED FROM 3D
POINTS USING THE DEPTH IMAGES. WHEN THE NUMBER OF FALSE

POSITIVES IS TOO HIGH, WE HIGHLIGHT THE VALUE IN RED.

HD Method # TP # FP P R F MS

20

ST-ORB 128 564 .18 .05 .08 .05

LMED 3 9 .25 .00 .00 .00
P-ST-ORB 3 15 .17 .00 .00 .00
Mask-P-ST-ORB 44 8071 .01 .02 .01 .02

30

ST-ORB 515 4107 .11 .21 .15 .20

LMED 19 87 .18 .01 .01 .01
P-ST-ORB 19 151 .11 .01 .01 .01
Mask-P-ST-ORB 147 33669 .00 .06 .01 .06

40

ST-ORB 1034 29684 .03 .42 .06 .41

LMED 51 540 .09 .02 .03 .02
P-ST-ORB 66 1134 .06 .03 .04 .03
Mask-P-ST-ORB 314 102177 .00 .13 .01 .12

50

ST-ORB 1484 176029 .01 .61 .02 .59

LMED 120 3644 .03 .05 .04 .05
P-ST-ORB 158 7102 .02 .06 .03 .06
Mask-P-ST-ORB 630 267332 .00 .26 .00 .25

60

ST-ORB 1841 717154 .00 .75 .01 .73

LMED 212 18728 .01 .09 .02 .08
P-ST-ORB 309 32584 .01 .13 .02 .12
Mask-P-ST-ORB 974 616485 .00 .40 .00 .39
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Fig. 4. Distribution of the Hamming distances for corresponding features (true
positives, TP) and non-corresponding features (false positives, FP) for ST-
ORB, LMED, P-ST-ORB, and Mask-P-ST-ORB with ‘synthethic’ tracklets.

Because each method can obtain the best performance at

different thresholds of the Hamming distances and to make

the comparison fair, we compare the methods by varying the

number of matches from 0 to 5000. We can observe that Mask-

P-ST-ORB has very low performance in the first 5000 matches,

while the other methods confirm the previous results.

F. Results with real tracklets

We compare all the methods on both freiburg office and

freiburg desk datasets using the spatio-temporal features ob-

tained with the tracking approach discussed in Sec. IV-F.

Fig. 6, top shows the distributions of the Hamming distance for

corresponding (true positives) and non-corresponding (false

positives) features. As freiburg office has a limited change
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Fig. 5. Performance results with ‘synthetic’ tracklets on the freiburg desk

dataset. (a) Precision, recall, recall vs 1-precision, and F-score curves with
the threshold on the Hamming distance varying from 20 to 80. (b) Precision,
recall and F-score curves with the number of matches varying from 0 to
5000. The relation between Hamming distance and the number matches is
also shown.

in viewpoint and the camera motion is quite slow, the dis-

tributions are slightly better separated, while they cannot be

distinguished in the freiburg desk dataset. Fig. 6 also shows

the performance results by varying the Hamming distance

(Fig. 6, middle) and by varying the number of matches (Fig. 6,

bottom). ST-ORB is the best in both datasets, while P-ST-

ORB and Mask-P-ST-ORB outperform LMED. However, the

performance of Mask-P-ST-ORB is similar to P-ST-ORB,

showing that masking the temporally unstable binary tests

is unnecessary in this case. Therefore, the first reduction is

sufficient to compact the high-dimensional ST-ORB descriptor.

V. CONCLUSION

We investigated the problem of matching spatio-temporal

features extracted from videos acquired by independently mov-

ing cameras. We proposed a spatio-temporal binary descriptor

obtained by tracking ORB [11] features and concatenating

their descriptors. As matching the high-dimensional descrip-

tors is computationally expensive, we accumulated the spatio-

temporal features into a fixed-length binary descriptors by

pooling and selecting the temporally dominant values. We
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Fig. 6. Performance results with real tracklets on the freiburg office (left columns) and freiburg desk (right columns) datasets. On top (first two rows),
distribution of the Hamming distances for corresponding features (true positives, TP) and non-corresponding features (false positives, FP) for ST-ORB,
LMED, P-ST-ORB, and Mask-P-ST-ORB. In the middle (third and fourth rows), precision, recall, recall vs 1-precision, and F-score curves with the threshold
on the Hamming distance varying from 20 to 80. At the bottom (fifth and sixth rows), precision, recall and F-score curves with the number of matches varying
from 0 to 5000. The relation between Hamming distance and the number matches is also shown.

also complemented this descriptor with an additional binary

descriptor by encoding the temporal stability of each binary

test and ignoring those binary values in the first descriptor

when matching features across cameras. Experiments showed

that our descriptor outperforms LMED, the method proposed

in ORB-SLAM [6]. As future work, we will investigate an

effective reduction approach that considers the viewpoint and

preserves the matching efficiency.
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