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ABSTRACT

We propose an active collision-avoiding tracking method for agents
that use a directional sensor to maintain a target in their field of view.
The proposed approach combines view maintenance and reduction
of the risk of track loss with the Optimal Reciprocal Collision Avoid-
ance method for target following. Agents adapt the responsibility
they share to avoid each other and minimise the deviation angle of
their heading direction from their target with a smooth actuation. Ex-
perimental results with real people trajectories from public datasets
show that the proposed method improves view maintenance.

Index Terms— target following, active directional sensor,
multi-agent systems, collision avoidance

1. INTRODUCTION

A camera-equipped robot (agent) that autonomously follows a per-
son in public places can provide a service or assistance. Multiple
agents concurrently following their target need to avoid collisions
with other agents and targets (e.g. people). In multi-agent colli-
sion avoidance, reciprocity is important to avoid undesirable oscil-
lations [1]. Reciprocity can be achieved if the agents use the Opti-
mal Reciprocal Collision Avoidance (ORCA) method [1, 2, 3, 4, 5].
ORCA allows agents to derive a set of velocities that avoid collisions
with nearby moving agents. Then each agent selects from this set the
closest collision-free velocity to its preferred velocity (i.e. the veloc-
ity the agent would maintain in absence of obstacles). Moreover, for
target following with a directional sensor, such as a camera, agents
need to guarantee view maintenance, i.e. keeping the moving target
centred at a certain distance within the field of view (FoV). Therefore
the collision-free velocities should further account for view mainte-
nance a constraint that, to the best of our knowledge, has not been
explored in the literature yet.

In this paper we propose a view-maintenance method for colli-
sion avoidance manoeuvres. To enable smooth actuation when an
agent heads towards its target, we adaptively set the feedback er-
rors to compute the agent control from the collision-free velocity
based on both the deviation angle and its derivative. Furthermore,
we incorporate the relative risk of view loss to adapt the pair-wise
responsibility so that agents with a higher risk of losing the view of
their target can reduce their share of responsibility and move more
closely at their preferred velocity. We validate the proposed method
with people trajectories extracted from publicly available datasets,
and demonstrate the improvements in view maintenance.

Fig. 1. Multiple agents (green) with a directional sensor follow their
target (red). The goal for each agent is to maintain, despite the pres-
ence of multiple moving obstacles, its target at a certain desirable
distance and viewing angle.

2. VIEW-AWARE CONCURRENT TARGET FOLLOWING

2.1. Preliminaries

Let multiple agents coexist in a shared area and let each agent fol-
low one target at a time (Fig. 1). Each agent ci is disk-shaped with
radius r and position pi(t) at time t. Each agent has a directional
sensor with a sector-shaped FoV whose orientation is the same as
the agent’s heading direction. Each target on is modelled as a disk
of radius r and has position pn(t) at time t. Let din(t) be the dis-
tance between ci and its target on at time t and δin(t) ∈ (−π, π] be
the deviation angle from the agent heading direction to on (Fig. 1).
Each ci computes the control vector ui(t) to maintain its target on
at a certain desirable distance d∗in in the agent’s heading direction
(i.e. din(t) = d∗in and δin(t) = 0), while avoiding collisions with
other agents and targets (i.e. dij(t) > 2r, ∀j, j 6= i and din(t) >
2r,∀n). We assume that ci knows which target to follow, receives
(or infers) the preferred velocities of nearby agents and targets, and
receives (or estimates) the positions of nearby agents and targets via
external tracking system [5, 2] or via cooperative tracking [6, 7].

2.2. Collision-avoiding velocities

Let ci and cj at position pi and pj , respectively (to simplify the
notation we will omit t), aim to achieve their respective preferred
velocity v∗i and v∗j (Fig. 2(a)). Each agent ci then exchanges its pre-
ferred velocity with neighbouring agents and derives the pair-wise
velocity constraints induced by each of its neighbouring agents and
targets using ORCA with adaptive responsibility sharing.

A collision-free velocity, vAi , is obtained from which we com-
pute a feasible control ui that minimises the deviation angle of the
agent’s heading direction from its target.

Let the target on of agent ci be at pn with velocity vn. If vmax
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Fig. 2. Optimal reciprocal collision-avoiding velocities. (a) Agent ci
and cj with radius r at pi and pj with their preferred velocity v∗i and
v∗j , respectively. (b) The grey area indicates the relative velocities of
ci that are collision-avoiding to cj in τ time steps (Aτi,j(0)). mi,j

is the minimal velocity for v∗i,j to get out of the velocity obstacle (
Oτ
i,j(0)) and ni,j is the outward normal. (c) The grey area indicates

the velocities of ci that are optimal reciprocal collision-avoiding to
cj in τ time steps (A∗,τi,j ) by sharing ai,j responsibility to avoid cj .

is the maximum agent speed, then we compute v∗i as:

v∗i = ein max
(

min
(

(d̃in − d∗in)/To, vmax
)
,−vmax

)
, (1)

where To is temporal interval during which the velocity will be main-
tained (To = 1s when the velocity is maintained for one second),
d̃in is the distance between the position pi of agent ci and the pre-
dicted target position p̃n estimated using the current target velocity.
ein is the unit vector indicating the direction from pi towards p̃n.

With knowledge of the preferred velocities of nearby agents and
targets, each agent then derives the pair-wise velocity constraint in-
duced by each its nearby agent and target. We first derive the Veloc-
ity Obstacle (VO) of ci induced by cj , i.e. the set of velocities of ci
that can lead to a collision with cj in a time horizon τ [8]. In the
relative velocity space of cj (as shown in Fig. 2(b)), let Oτ

i,j(0) be
the VO of ci induced by cj assuming that cj moves at its preferred
velocity, i.e. 0:

Oτ
i,j(0) = {v | ‖tv‖ >

∥∥pij − 2r
∥∥ , t ∈ [0, τ ]}, (2)

where pij is the relative position of cj with respect to ci. The set
of collision-avoiding relative velocities for ci to avoid cj in τ time
horizon, Aτi,j(0), can be therefore represented as Aτi,j(0) = {v | v /∈
Oτ
i,j(0)}.

Reciprocal collision avoidance is possible when ci and cj choose
to move at vi ∈ Aτi,j(vj) and vj ∈ Aτj,i(vi), respectively [1]. When
v∗i,j lies within the VO as shown in Fig. 2(b), ORCA shifts v∗i,j out
of the VO with a minimal effort that is contributed by both agents.

Let mi,j be the minimal relative velocity change to avoid colli-
sions. Therefore mi,j is the vector starting from v∗i,j to the closest
point at the boundary of the VO. ni,j is the outward plane normal at
v∗i,j + mi,j .

2.3. Adaptive responsibility

Agents share the responsibility for avoiding a collision. Let ai,j and
aj,i be the responsibility shared by ci and cj to avoid each other and
ai,j + aj,i = 1. The set of optimal reciprocal collision-avoiding
velocity for ci to avoid cj in τ time steps is defined as:

A∗,τi,j = {v | v− (v∗i + ai,jmi,j) · ni,j 6 0}. (3)

As shown in Fig. 2(c), A∗,τi,j are the velocities in the grey half-
plane at the direction of ni,j . The set of collision-avoiding velocities
of cj induced by ci, i.e. A∗,τj,i , can be constructed in the same way.
To allow targets move as they wish, agents share full responsibility
to avoid targets.

Let A∗,τi,n be the set of velocities of ci that are collision-avoiding
to on in τ time steps. If CAi and ΛAi are the set of agents and targets
within the avoidance range, then the set of accessible velocities of ci
that are collision-avoiding to all agents and targets is:

A∗,τi =

 ⋂
cj∈CA

i

A∗,τi,j

 ∩
 ⋂
on∈ΛA

i

A∗,τi,n

 ∩ Vi, (4)

where Vi is the set of accessible velocities under speed/acceleration
limits.

The new collision-free velocity vAi lies within A∗,τi and is the
closest to v∗i . Note that A∗,τi = ∅ can occur when ci is densely
surrounded by agents or targets. This problem can be addressed by
allowing the agent to intrude slightly the velocity constraints until at
least one accessible velocity is found [1].

The choice of the pair-wise responsibility influences the number
and distribution of the accessible collision-free velocities of the pair
of agents [9, 10]. Unlike [1, 5, 11, 12, 2] that share the responsibility
equally, we adapt the responsibility based on the risk of an agent
losing its target, which can be measured as the velocity difference,
∆v∗i , between the preferred velocity v∗i and the current velocity vi.

Let qi be the risk of ci losing its target. We compute this risk as
qi = e|∆v∗i |. The responsibility ai,j that ci shares with cj depends
on the difference between qi and qj . To obtain a continuous and
bounded value we adopt the Jain’s fairness measure that measures
how alike two values are [13]. The fairness between qi and qj , %ij ,
is therefore:

%ij =
1

2

(qi + qj)
2

qi2 + qj2
, (5)

where %ij ∈ [0.5, 1], with %ij = 0.5 being the least fair case and
%ij = 1 being the fairest case.

We finally compute ai,j , the responsibility for ci to avoid cj , as:

ai,j =

{
%ij − 0.5 qi > qj
1.5− %ij qi 6 qj

. (6)

The responsibility aj,i for cj to avoid ci is computed in the same
way.

2.4. Deviation angle minimisation

Each agent computes a feasible control from vAi . Let pAi be the tem-
porary goal position of ci set by vAi (Fig. 3). Let ϕAi ∈ (−π, π]
be the angle from the agent’s heading direction to pAi . It is common
to compute the control ui based on the feedback of the distance er-
ror, di,e, between pi and pAi and the angle error, ϕi,e, from current
agent’s heading to pAi . The agent can either move forward, i.e. pos-
itive di,e, while turning ϕAi to the right side of the agent, or move
backward, i.e. negative di,e, while turning the complement angle
of ϕAi to the left side of the agent. Works on multi-agent naviga-
tion set di,e positive [4, 5, 14, 11] as the agent’s heading is of little
importance, while we minimise the deviation angle δin by properly
setting the sign of di,e in order to avoid unnecessary view loss on
targets (Option 2 in Fig. 3).



Fig. 3. Agent ci at pi has to reach pAi due to the collision-free veloc-
ity vAi . ϕAi is the angle from the agent’s heading to pAi . Two options
can reach pAi but Option 2 results in a view loss.

Let d+
i,e and ϕ+

i,e be the distance error and the angular error of a
forward movement, respectively, that can be computed as:

d+
i,e =

∥∥∥vAi
∥∥∥

ϕ+
i,e = ϕAi . (7)

Correspondingly, d−i,e and ϕ−i,e are the distance and angular error of
a backward movement:

d−i,e = −
∥∥∥vAi

∥∥∥
ϕ−i,e = ϕAi − sign(ϕAi )π. (8)

We compute the candidate control vectors of the two options
using the feedback-based method in [15]. Let X be either + or −
and uXi =

[
vXi , ω

X
i

]
be the control vector with vXi for the speed

control and ωXi for the steering control. The resulted deviation angle
in ∆T time, δXin(∆T ), given the control uXi can then be computed
as δXin(∆T ) = δin + ∆δXin, where ∆δXin is the difference of the
deviation angle between two consecutive time steps. When agents
follow a differential-drive kinematic model then

∆δXin = −ωXi ∆T +
vXi ∆T

din
sin(δin). (9)

To minimise the deviation angle, one can select the movement
direction (forward or backward) that leads to a smaller |δin(∆T )|.
However, oscillations can occur due to direction flipping when the
target direction is orthogonal to vAi . To achieve smooth motion, we
first select a candidate movement direction that leads to a smaller
|∆δin|. If the resulted |∆δin(∆T )| > π

2
, i.e. the agent heading

opposite to its target, the direction resulting in a smaller |δin(∆T )|
is selected. Otherwise, the candidate movement direction is the final
movement direction and the corresponding control vector is used to
update the agent’s state, i.e. the position and heading direction.

3. VALIDATION

We compare Differential-Drive agents moving with DD-AR-DM,
the proposed method using Adaptive Responsibility sharing and De-
viation angle Minimisation, against DD-AR, the same method using
only Adaptive Responsibility sharing, and DD-DM, using only De-
viation angle Minimisation, as well as DD, Snape’s method [5]. We
base the implementation on the RVO21 library.

Targets are initialised at the agent’s heading direction at the de-
sired agent-target distance, d∗in = 2m. The maximum speed of the

1http://gamma.cs.unc.edu/RVO2. Last accessed: 27/10/2017

(a) (b)
Fig. 4. Trajectories of Scenario (a) I and (b) II. Numbers indicate the
indices and starting positions of targets. The red intensity increases
over time.

agents is vmax = 2m/s. The maximum speed of targets is smaller
than that of the agents. The agent avoidance range is set to 2vmax,
which is the worst case for a collision between a pair of agents in
one second. We set the time horizon τ = 3 for a moderate avoid-
ance aversion [2]. The radius of agents and targets, r, is set to 0.3m
and is considered as 0.6m when deriving the velocity constraints to
compensate the trajectory tracking error [5].

We consider two scenarios: Scenario I is a 30m × 30m area
with 10 trajectories of 60s from the PETS2009 dataset S2L1 se-
quence2. The sequence contains people walking with various pat-
terns, such as meeting and random walking (Fig. 4 (a)). Scenario
II is a 20m × 20m area with 7 trajectories of 16s from the ETH
Walking Pedestrian Hotel sequence3. The sequence contains the tra-
jectories of two groups of pedestrians intersecting with each other
from opposite directions (Fig. 4 (b)).

The performance for the deviation angle, ηδi , is measured as the
percentage of simulation time T during which the absolute value
of the deviation angle from the agent heading towards its target is
smaller than the error bound δE :

ηδi =
1

T

T∑
t=1

|δin(t)| 6 δE . (10)

The performance for the distance maintenance, ηdi , is measured as
the percentage of simulation time T during which the difference be-
tween the actual agent-target distance and the desired distance is
smaller than the error bound dE :

ηdi =
1

T

T∑
t=1

|din(t)− d∗in| 6 dE . (11)

As the choice of the deviation angle error bound δE and the dis-
tance error bound dE influence the view maintenance results, we per-
form the evaluation with varying error bound values: δE ∈ [0◦, 90◦]
with a 9◦ step; and dE ∈ [0, 1]m with a 0.1m step. Fig. 5 shows
the averaged deviation angle performance and the distance mainte-
nance performance for all agents in Scenario I and II. The adaptive
responsibility sharing (DD-AR) outperforms DD in maintaining the
agent-target distance regardless of the value of dE , but not in main-
taining the deviation angle.

DD computes the control from the collision-free velocity only
accounting for forward motions, which easily causes the agent to

2http://www.cvg.reading.ac.uk/PETS2009. Last accessed: 27/10/2017
3http://www.vision.ee.ethz.ch/en/datasets. Last accessed: 27/10/2017



(a) (b)

(c) (d)
Fig. 5. Average view and distance maintenance performance at var-
ious δE and dE . Scenario I: (a) average deviation angle mainte-
nance performance and (b) average distance maintenance perfor-
mance; Scenario II: (c) average deviation angle maintenance per-
formance and (d) average distance maintenance performance.

head opposite to its target when the collision-free velocity is back-
wards or people move back and forth. DD-DM improves the devia-
tion angle performance of DD. The average deviation angle ratio of
DD-DM reaches 100% at δE = 90◦, as the algorithm of deviation
angle minimisation avoids the agent heading opposite to its target,
i.e. when the absolute deviation angle is larger than 90◦. This can be
observed from Fig. 6 which shows the deviation angle and the dis-
tance error of agent 6 that experiences frequent backward collision-
free velocities in Scenario I.

DD-DM maintains the deviation angle at the cost of a reduced
distance maintenance performance, because DD-DM forces the
agent to head towards its target, which can cause an agent devi-
ate from its desired agent-target distance due to the adjustments
of agent heading. On the other hand, by adding the adaptive re-
sponsibility sharing to DD-DM, i.e. DD-AR-DM, the best deviation
angle maintenance performance is achieved regardless the value
of δE . Moreover, DD-AR-DM improves the distance maintenance
performance compared to DD-DM, but not compared to DD-AR.

On average, DD-AR-DM improves the deviation angle by 26%
and 20% compared to DD in Scenario I and Scenario II, respectively.
The performance improvement on the deviation angle in Scenario I
is higher than that in Scenario II where the trajectories have forward
motion only, while in Scenario I people also turn backwards.

Fig. 7 shows the snapshots of agents’ trajectories in Scenario I
with DD and DD-AR-DM at the time step 310. We observe that with
DD agent 2 and 3 head opposite to their target when the targets are
turning back (Fig. 7(a)), whereas with DD-AR-DM, agent 2 and 3
can maintain their heading direction towards their target (Fig. 7(b)).
Similar behaviour exists when the collision-free velocity is back-
wards, for example, agent 0.

The averaged travel distance of agents with DD, DD-AR, DD-
DM and DD-AR-DM in Scenario I are 28m, 28.5m, 24.2m and
25m, respectively, and in Scenario II are 15m, 15m, 16.5m and
15m, respectively. Deviation angle minimisation affects the travel
distance more than adaptive responsibility sharing. Demonstra-

(a) (b)
Fig. 6. Results of (a) the deviation angle and (b) the distance error
of agent 6 over time in Scenario I using different methods.

(a)

(b)
Fig. 7. Agent trajectories in Scenario I at time step 310 using (a) DD
and (b) DD-AR-DM. Agents (green) follow their target (red) with
the same index. The heading direction of an agent is indicated by
a triangle with increasing intensity over time. Circles indicate the
collision avoiding range. Selected areas are magnified.

tion videos of scene dynamics using different methods can be
found here4.

4. CONCLUSIONS

We proposed a target following method that accounts for view main-
tenance in terms of view angle and distance in an Optimal Reciprocal
Collision Avoidance framework. To address view maintenance dur-
ing collision avoidance manoeuvres, the algorithm adapts the pair-
wise responsibility based on the relative risk level of agents losing
their targets and minimise the agent deviation angle from its target in
a smooth manner when computing the feasible control. We validated
the proposed method with real people trajectories.

Future work will validate the proposed method on robotic plat-
forms with real-time sensing, control and actuation.

4http://www.eecs.qmul.ac.uk/~andrea/vorca.html
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