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ABSTRACT

Light undergoes a wavelength-dependent attenuation and loses en-
ergy along its propagation path in water. In particular, the absorp-
tion of red wavelengths is greater than that of green and blue wave-
lengths in open ocean waters. This reduces the red intensity of the
scene radiance reaching the camera and results in non-uniform light,
known as background light, due to the scene depth. Restoration
methods that compensate for this colour loss often assume constant
background light and distort the colour of the water region(s). To
address this problem, we propose a restoration method that com-
pensates for the colour loss due to the scene-to-camera distance of
non-water regions without altering the colour of pixels represent-
ing water. This restoration is achieved by ensuring background light
candidates are selected from pixels representing water and then es-
timating the non-uniform background light without prior knowledge
of the scene depth. Experimental results shows that the proposed
approach outperforms existing methods in preserving the colour of
water regions.

Index Terms— Spectral distortion, restoration, underwater im-
ages, colour correction.

1. INTRODUCTION

Underwater images are important for a variety of applications, in-
cluding marine species identification, underwater robot vision and
navigation, and recreational photography [1]. The appearance of un-
derwater objects is degraded by the combination of scattering and
absorption of light, a phenomenon known as attenuation [2]. Atten-
uation is quantified by the attenuation coefficient, which depends on
the composition of water and varies across geographic locations [3].
Scattering changes the direction of light propagation and contributes
to blurring, whereas absorption reduces the light intensity along its
propagation path. In open ocean waters, red light is absorbed to a
greater extent than green and blue light [4], hence resulting in im-
ages with reduced red intensity, and blue or green colour cast.

The quality of underwater images can be improved using en-
hancement or restoration methods. Enhancement methods aim to
remove the colour cast introduced by the vertical depth between the
scene and water surface. Enhancement methods that employ global
white-balancing to remove the colour cast [5, 6] often introduce arte-
facts in water regions. Restoration methods aim to compensate for
the colour loss due to the scene-to-camera distance. In this paper we
will focus on restoration methods.

Light attenuation can be modelled as an exponential decay. As
such, light experiences a significant magnitude decrease in the first
few meters underwater. This effect can be observed in images that
capture a large vertical depth range, taken near the water surface or
in water locations with large attenuation coefficients. While most

underwater image processing methods assume constant global back-
ground light reaching the scene in an image, in these aforementioned
cases, the assumption does not hold. Using a uniform global back-
ground light to recover the scene radiance leads to false colours in
the water region. The only method that considers non-uniform back-
ground light requires knowledge of the scene depth-range and atten-
uation coefficients [7]. However, unless special devices are used,
this information is generally not available.

In this paper, we propose a background light estimation algo-
rithm that does not require prior knowledge of the scene depth or
the attenuation coefficient. We considers the attenuation coefficients
per unit pixel distance in the image, obtained by linear regression.
We then interpolate the obtained coefficients to estimate the back-
ground light for the entire image. Unlike methods that use a uniform
global background light, we use the estimated background light in
the restoration. Using the estimated background light, we can re-
veal details of the scene that would otherwise be lost with a uniform
global background light. Moreover, the proposed method avoids in-
troducing artefacts in the water region.

2. BACKGROUND

Let J(x, y) be the scene radiance at pixel location (x, y) and t(x, y)
be the transmission map, which modulates the portion of the scene
radiance reaching the camera. The observed intensity, I(x, y), can
be described as [2]:

I(x, y) = t(x, y)J(x, y) + (1− t(x, y))A, (1)

whereA is the global background light. The scene radiance, J(x, y),
can be recovered as:

J(x, y) =
I(x, y)

t(x, y)
− 1− t(x, y)

t(x, y)
A. (2)

As attenuation is wavelength dependent, t(x, y) and A should
be estimated accurately for each colour channel. While t(x, y) de-
termines the compensation extent for each pixel,A affects the overall
brightness: being a subtractive term in Eq. (2), a brighter estimated
A leads to a darker restored image. The effect is amplified when
t(x, y) < 0.5. Selecting A from an appropriate region is therefore
crucial to the quality of restored image.

Several underwater restoration methods [7, 8] use the dark
channel prior [9], which was proposed for outdoor hazy images and
shares the model in Eq. (1). The Dark Channel, JD(x, y), is defined
by the minimum intensity value across the R, G, and B channels in a
neighbourhood centred at (x, y). The dark channel prior states that
JD(x, y) → 0 in a haze-free image. A is estimated as the brightest
pixel from the top 0.1% of JD(x, y) pixels and is then used to nor-
malise JD(x, y) to obtain t(x, y). However, applying this prior to
underwater images often results in selecting the red intensity chan-



Table 1: Comparison of methods for the estimations of the global
background light, A, and the transmission map, t(x, y). KEY –
JD(x, y): Dark Channel; JR(x, y): Red Channel; β: attenuation
coefficient; Pro: proposed method.

[9] [7] [10] [11] Pro

A

prior JD(x, y) X X
JR(x, y) X
blurriness X

constraint variance X X
ratio X

estimate non-uniform A X X

t
fixed β X X
different t for each channel X X X
t independent of A X

nel as JD(x, y) and hence in over-estimating t(x, y). Moreover, A
is often picked from bright objects instead of from the water region,
resulting in a darker restored image. The aforementioned problem
can be addressed by considering light absorption (i.e. losses in the
red channel) as the cue for t(x, y). The Red Channel was proposed
in [10] as

JR(x, y) = min
(s,t)∈Ω(x,y)

{1− Ir(s, t), Ig(s, t), Ib(s, t)}, (3)

for a neighbourhood Ω(x, y) centred at (x, y). The red channel prior
states that JR(x, y) → 0 for objects close to the camera. A is se-
lected as the pixel with the lowest red intensity from the top 10%
brightest JR pixels. However, not all objects contain red and there-
fore objects close to the camera, but with low red intensity, will be
considered to be far away.

As light scattering causes blur in underwater images and the ef-
fect increases with the scene-to-camera distance, Gaussian filters can
be applied to obtain a blurriness map as an indication of normalised
distance [11]. The transmission map, t(x, y), can be derived from
the blurriness map using Eq. (4) with fixed attenuation coefficients
and fixed distance range [11]. A is estimated as the weighted average
of six candidate pixels selected from candidate regions obtained by
successive quadtree subdivisions. This method fails to capture the
distance of texture-less regions and the fixed distance range, when
over-estimated, results in over-compensated colour.

The colour loss due to the vertical depth can be compensated
using an estimation based on fixed attenuation coefficients and the
dark channel prior [7]. After compensating for the scene-to-camera
distance, the vertical depth is compensated with interpolated esti-
mated background light. This is the only method that addresses the
problem of non-uniform background light but with the assumption
of known depth-range under water. However, fixed attenuation co-
efficients do not work across different geographic locations and the
depth-range of the scene is generally unknown.

In summary, A is generally estimated from pixel candidates
based on priors [7, 10], which are prone to noise, or from quadtree
subdivisions, which obtain candidate regions based on statistical
metrics [11, 12] and restricts the shape of candidate regions. Table 1
compares the restoration methods for estimating A and t(x, y).

3. UNIFORM BACKGROUND LIGHT

In this section we present the derivation of global background light
candidate regions, which is based on physical constraints that are
valid in open ocean water. We also derive a transmission map that,

when used for underwater image restoration, does not overcompen-
sate for the red intensity channel.

According to the Beer-Lambert’s Law [13], t(x, y) can be rep-
resented as:

t(x, y) = e−βd(x,y), (4)

where d(x, y) is the scene-to-camera distance and β is the attenua-
tion coefficient.

Let the attenuation coefficient and the global background light
for red be βr andAr , respectively; and those for green or blue be βc

and Ac respectively, with c ∈ {g, b}. Similarly, let br and bc be the
scattering coefficient for red and for c ∈ {g, b} respectively.

The ratio between attenuation coefficients can be expressed
as [14]:

βc

βr
=
bcAr

brAc
, (5)

and the ratio between scattering coefficients can be expressed as [3]:

bc

br
=
a− bλc

a− bλr , (6)

where a = 1.62517 and b = 0.00113.
As red light undergoes stronger attenuation than green and blue

light, it follows that βr > βc. Moreover, consider the wavelength
values λr = 620nm, λg = 540nm and λb = 450nm for red,
green and blue light following [14], we can derive the following ratio
constraints for global background light candidate:

Ar

Ag
< 0.9109 and

Ar

Ab
< 0.8280. (7)

The global background light should come from a flat intensity
area. We therefore aim to ensure the uniformness of candidate re-
gions, instead of the relative uniformness as done in other works
that select the region with the lowest variance in successive quadtree
subdivision [11]. To this end, we define the variance constraint, in
which we calculate the variance, σ2(x, y), in a square window of
size N centred at each (x, y) in the grayscale version of the input
image. We only consider windows with sufficiently small variance:
σ2(x, y) ≤ ζ2, with ζ = 0.01 (i.e. 1% of the intensity range) and
N = 15 for images whose size ranges from 300×400 to 720×1280.

The ratio and variance constraints defined above identify, re-
spectively, pixel-wise and patch-wise candidates, which do not nec-
essarily belong to the water region. To remove spurious candidates,
we only consider region proposals with over 50% of pixels fulfilling
both constraints as candidate regions, by combining the constraints
with a bottom-up hierarchical segmentation, Multiscale Combinato-
rial Grouping [15]. Finally, the global background light,A, is chosen
from candidate regions at pixel location

(x∗, y∗) = arg max
(x,y)

(
max

(
Ig (x, y) , Ib (x, y)

)
− Ir (x, y)

)
.

(8)
The inner max operator selects the least attenuated colour channel
among green and blue as the dominant channel for water. The pixel
with the maximum difference between the dominating channel and
the red channel, which is most attenuated, is selected to represent the
scene at maximum distance from the camera.

As for the transmission map, we derive two partial maps with
complementary information. First we obtain the texture map, which
captures the scattering phenomenon as indication for transmission of
rich texture regions. Similarly to [11], we capture this information
using a Gaussian filter. To capture texture with different fineness,
we use a Gaussian filter pyramid of 3 levels, each with 4 layers.



(a) (b)

Fig. 1: Example of preservation of the colour of the water region,
while the colour loss of non-water regions is compensated for. (a)
Original image; (b) restored scene radiance with uniform A.

Each filter has σij =
√

2i+j , where i and j indexes level and layer
respectively. The original image is input to the first level and the
size is halved for each subsequent level. Each layer’s output is the
difference between the blurred and input image.

The texture map is the average of the output of all layers. How-
ever, as the histogram of this map skews to 0, we clip the values at
the 95-th percentile to preserve the histogram characteristics while
stretching the distribution to [0,1]. This map is unable to estimate the
distance from the camera for regions with plain texture that, since
there is no difference between the blurred and original image, will
be considered far away from the camera.

The scene-to-camera distance can still be estimated based on the
absorption of light, and hence the colour loss in the red channel. We
obtain the Automatic Red Channel map MR as proposed in [10]:

MR(x) = 1−min


min
y∈Ω(x)

1− Ir(y)

1−Ar ,

min
y∈Ω(x)

Ig(y)

Ag
,

min
y∈Ω(x)

Ib(y)

Ab

 .

(9)
The normalisation by A guarantees MR(x, y) to be in [0,1] and

be comparable to the texture map, M text(x, y). Pure white and
dark pixels contribute toMR(x, y) of 1, indicating minimum scene-
to-camera distance. We combine the maps considering for each
pixel location the transmission map value for red intensity chan-
nel, t̃r(x, y), to be the larger from the two partial maps: t̃r(x, y) =
max(M text(x, y),MR(x, y)) and then refine t̃r(x, y) by soft mat-
ting [16].

The range of the above transmission map is in [0,1]. As small
transmission values often lead to overcompensation for the red in-
tensity channel, to avoid this effect we normalise the estimated trans-
mission map to the range of JR(x, y) defined in Eq. (3). As such
we no longer consider A, which has the smallest transmission map
value, to be at infinite distance from the camera but at the same dis-
tance as the non-water scene that is farthest away from the camera.

With reference to Eq. (4), the transmission maps for green and
blue, tc(x, y), can be obtained as

tc(x, y) = tr(x, y)
βc

βr , (10)

where βc

βr
is obtained from Eq. ( 5) and is guaranteed to be < 1

by our ratio constraint for Ar

Ac
. Hence for tr(x, y) ∈ [0, 1], we

have tr(x, y) ≤ tc(x, y) and equality holds only when tr(x, y) = 0
or 1. This ensures that at the same pixel location, the red channel
intensity is compensated to the same or greater extent than that of the
other channels, as it is multiplied by a value that is not smaller. This
respects the fact that in open ocean water red light loses its energy
more quickly than green and blue, and hence shall be compensated

(a) (b) (c)

Fig. 2: Impact of image depth-range compensation in the restoration
process. (a) Pro (proposed method) with uniformA (note the pinkish
top of the water region); (b) Pro with non-uniform A; (c) estimated
non-uniform A.

to a greater extent.
After the estimation of t(x, y) and A, we can restore the scene

radiance using Eq. (2). An example is shown in Fig. 1. Fig. 2 shows
that a uniform A introduces false colours in the water region if the
background light is not uniform.

In the next section, we detail the proposed approach to estimate
non-uniform background light and hence preserve the water colour.

4. IMAGE DEPTH-RANGE COMPENSATION

In this section we derive, without prior knowledge on the scene
depth, the attenuation coefficient and background light that we will
use to compensate for the image depth range.

Let us assume that natural light strikes the water surface evenly
and the background light in the image is horizontally constant. The
background light at the top of the image, Ac0, undergoes attenuation
for each vertical pixel distance D travelled. Our goal is to estimate
the change of background light between two vertically adjacent pix-
els, quantified by the attenuation coefficient per pixel distance, β̂c.

The light intensity Acd at vertical pixel distance D from the top
of the image can be calculated as

AcD = Ac0e
−β̂cD, (11)

which can also be written as lnAcD = lnAc0−β̂cD. We use linear re-
gression to estimate lnAc0 and β̂c. To this end, we select the column
containing the global background light pixel, (x∗, y∗), from the cor-
responding connected component 1 of the global background light
candidate regions, obtained in Sec. 3, and perform linear regression
with L1 error on the set {(xi, ln (I (xi, y

∗)))}.
However, pairs of vertically adjacent pixels in the image may

not represent the same vertical underwater depth when objects are
captured at different distances from the camera. Let two pixels rep-
resent scene with distance D0 and D1 to the camera. The transmis-
sion map values for the corresponding points are tD0 = e−βD0 and
tD1 = e−βD1 respectively. The ratio D0 : D1 can be calculated
as ln (tD0) : ln (tD1) to obtain the scene-to-camera distances ratio
between the concerned pixel and the estimated global background
light pixel.

Finally, we obtain the background light for c ∈ {r, g, b} as

Ac(x, y) = Ac exp

(
−β̂c (x− x∗) ln (tr (x, y))

ln (tr (x∗, y∗))

)
, (12)

1To avoid the influence of lens distortion we do not consider the 5 pixels
on the border of the image.



Table 2: Comparison of the methods under analysis. KEY – Org.:
original image; ↑: the higher the better; ↓: the lower the better.

Org. DCP ARC WCID BLA Pro
MSEc ↓ N/A .0440 .0156 .0190 .0112 .0014
PSNRl ↑ N/A 21.5 25.2 27.9 29.3 37.0

avg (%) ↑ 9.9 15.8 9.5 16.9 30.9 16.9
UCIQE ↑ .5915 .6407 .5954 .6256 .6449 .6069

(a) Original (b) DCP (0.0694;12.7) (c) ARC (0.0100;22.3)

(d) WCID (0.0120;22.3) (e) BLA (0.0334;22.1) (f) Pro (0.0023;27.6)

Fig. 3: Example of preservation of water colour (scores represent
MSEc and PSNRl respectively). Note that the proposed method re-
veals details at bottom of the image.

where Ac is the estimated global background light and tr(x, y) is
the estimated transmission map for the red intensity channel.

As linear regression is performed on the connected component
containing the selected global background light, errors in global
background light estimation algorithm can accumulate and affect
the overall colour tone of the output image. To avoid error propaga-
tion, we impose the following constraint: if β̂r < β̂{g,b} or β̂c < 0,
then β̂c = 0, which reduces the background light to constant colour
A. Then we recover the scene radiance with Eq. (2). An example of
restoration using the estimated background light is shown in 2(b).

5. EXPERIMENTAL RESULTS

We compare the proposed method, Pro, with four other methods:
Dark Channel Prior (DCP) [9], Automatic Red Channel (ARC) [10],
Wavelength Compensation Image Dehazing (WCID) [7] and Blur-
riness and Light Absorption (BLA) [11]. We use a dataset of 60
images collected from three sources: [17][18][19]. We compare (i)
the preservation of the water colour and (ii) the overall quality of the
restored image. Results are summarised in Table 2.

To quantify the distortion of the water colour after restoration,
we calculate the mean square error (MSEc) across the R, G, and
B channels and the peak-signal-to-noise ratio (PSNRl) on the lumi-
nance channel between the original and restored images over pixels
representing water, which we segmented with LabelMe [20]. For
water colour preservation, Pro outperforms other methods by one
order of magnitude. Pro achieves the lowest average MSEc for the
dataset (0.0014), followed by BLA (0.0112). ARC (0.0156) and
WCID (0.0190) perform similarly, whereas DCP has a higher error
(0.0440). Pro achieves the highest average PSNRl (37.0), compared
with the second highest obtained by BLA (29.3). Sample restored
images are shown in Fig. 3.

We also asked viewers to compare the original and images re-
stored with the five methods under analysis, and to select out of the
six the most attractive image. Each image was evaluated at least 20

(a) Original (9.5%) (b) BLA (28.6%) (c) Pro (9.5%)

(d) (e) (f)

(g) Original (15%) (h) BLA (25%) (i) Pro (5%)

(j) (k) (l)

Fig. 4: Sample images (and corresponding subjective evaluation re-
sult). Patches in (d)-(f) and (j)-(l) are from Original; BLA; Pro.

times and on average 20.25 times. The results (see Table 2, second-
last row) are the average percentage of the method chosen by the
observers. Note that the percentages may not add up to 1 due to
rounding. In this small-scale evaluation, BLA obtains the highest
score as it outputs high contrast images that are usually preferred by
humans. However, images processed by BLA often include distorted
water colour or unnatural appearance of scene (see Figs. 3 and 4).
The images in Fig. 4(b)(h) were preferred to the images in (c)(i) (see
subjective evaluation scores for each image). In Fig. 4(b), details
are lost in BLA when the contrast is enhanced. In Fig. 4(h) the red
channel is over-compensated so that the fish and the sand appear to
be red.

Finally, although existing measures such as UCIQE [21] are bi-
ased towards images with certain characteristics that can also be due
to undesirable distortions and are hence unreliable in predicting im-
age quality [8], for completeness we also include, in the last row of
Table 2, UCIQE values, which were generated with through PUIQE
(http://puiqe.eecs.qmul.ac.uk/).

6. CONCLUSION

We proposed a restoration method for underwater images to compen-
sate for colour distortions induced by the scene-to-camera distance.
An important feature of the proposed method is that it compensates
for the depth range without prior knowledge of the scene. The pro-
posed method selects pixels representing water to estimate the global
background light. Results show that the proposed method can restore
the colour of non-water regions without distorting the water colour.

As future work, we aim to model scenes captured under arti-
ficial lights, as well as multiple reflections and blurring caused by
suspended particles in turbid waters.
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