
A distributed vision-based consensus model for aerial-robotic teams

Fabio Poiesi and Andrea Cavallaro

Abstract— We present a distributed model for a team of
autonomous aerial robots to collaboratively track a target
without external control. The model uses distributed consensus
to coordinate actions and to maintain formation via geometric
constraints. Each robot uses its ego-centric view of a target and
the relative distance from its two closest neighbors to infer its
steering commands. To account for noisy and missing target
detections, the robots exchange their estimated target position
and formation configuration through shared PID-controlled
steering responses. We show that the proposed model enables
the team to maintain the view of a maneuvering target with
varying acceleration under noisy detections and failures up to
situations when all robots but one lose the target from their
field of view.

I. INTRODUCTION

Cooperating robots are desirable for extended visual cover-
age [1]–[3], rapid search and rescue [4], [5] and collaborative
grasping tasks [6]. Coordinated control toward a shared
objective (e.g. following a target) while jointly planning
and performing maneuvers (e.g. maintaining a formation) is
challenging without an external localization system (e.g. in
GPS-denied environments) [7]. Robots may rely on observ-
ing the relative position of their neighbors, which may be
equipped with visual markers [8]. Robots in a formation
need to account for noisy and missing detections caused by
sensing failures or clutter as well as to coordinately adapt to
unpredictable variations in target acceleration [9]–[11].

In this paper, we propose a distributed control model that
allows aerial robots to coordinate within a formation using
as a shared reference a moving target detected with their
onboard camera (Fig. 1). The robots maintain a formation by
continuously sensing the target and without a motion capture
system or GPS. To infer the steering commands we exploit
the orientation of each sensor with respect to the body of the
robot. We considerably extend our previous work [12] and
improve coordination by formulating a new PID controller
and a new distributed information fusion algorithm that copes
with target accelerations, decelerations and U-turns. We
achieve a global agreement on the maneuvers of each robot
using distributed consensus, which also enables the formation
to avoid drifting when the target is not detected by one or

Fabio Poiesi is with Technologies of Vision, Fondazione Bruno Kessler,
Via Sommarive 18, Trento, IT, 38123, e-mail: <poiesi@fbk.eu>. He
performed this work when he was with the Centre for Intelligent Sensing,
Queen Mary University of London.

Andrea Cavallaro is with the Centre for Intelligent Sensing, Queen Mary
University of London, Mile End Road, London, UK, E1 4NS, e-mail:
<a.cavallaro@qmul.ac.uk>.

This work was supported by the Artemis JU and the UK Technol-
ogy Strategy Board (Innovate UK) through project COPCAMS under
Grant 332913. The support of the UK EPSRC through project NCNR
(EP/R02572X/1) is also acknowledged.

more robots. We maintain the shape of the formation by
constraining the robots’ dynamics by their relative distance
with their neighbors using geometrical constraints.

Unlike works that measure the 3D robot-target dis-
tance [13]–[15] using prior information about the size of
the target [14], we infer control commands using only the
position of the detected target on the image plane. Moreover,
unlike [16] we localize the target with respect to the local
reference system of each robot in order to allow the team to
operate in absence of a global reference system.

II. PROBLEM DEFINITION

Let a formation of N robots at time k ∈ R be defined
as graph F (k) = (C(k), D(k)), where the set C(k) =
{Ci(k)}Ni=1 contains the state Ci(k) of each robot i and
the matrix D(k) = [di,j(k)] ∈ RN×N defines the distance
di,j(k) between robot i and j.

The robot state Ci(k) = (xi(k), Ri(k)) consists of its
position xi(k) ∈ R3 in global coordinates and its orientation
(attitude) Ri(k) ∈ SO(3) [17], i.e. the rotation from the
local (body) to the global coordinate system. The body of
the robot is defined by three main body directions b1,i(k) =
Ri(k)e1, b2,i(k) = Ri(k)e2 and b3,i(k) = −Ri(k)e3, where
e1 = [1, 0, 0]T , e2 = [0, 1, 0]T and e3 = [0, 0, 1]T . Let the
subscript t indicate target. The target position in the global
coordinate system is xt(k) ∈ R3 and its velocity vt(k) =
[vx,t(k), vy,t(k), vz,t(k)]T .

Each robot i detects on its sensor plane the target with
position xt,i(k) ∈ R2. The 3D camera position corresponds
to that of the robot. The objective is to maintain the target
in the center of each sensor plane, and deviations from the
center have to be mapped into steering commands to adjust
the motion of the robots in order to achieve the objective.

III. PERCEPTION MODELLING

Let us consider a group of N ≥ 3 aerial inertial robots
capable of relative localization and target detection. The
robots cannot rely on an external positioning systems, but
can sense with their camera a target moving on the ground
and with other sensors the relative position of their closest
neighbors [18], [19].

Let the positions of all robots be initialized in formation
and on target, with fixed body orientations. At k = 0 ∀i,
Ci(0) is given, vt(0) = [0, 0, 0]T and each sensing region
has a different and fixed 3D orientation Rc,i that points
toward the target. Rc,i is time invariant with respect to the
body coordinate system Ri(0) and the target is centered
in each sensing region. The robot’s inertial motion in the
global coordinate system is determined by a controller that

!̃#(%)

sensing &
response

formation
maintenance

agent
dynamics

buffer

communication

consensus algorithms

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. X, MONTH X 5

Fig. 2. Block diagram. Need to fix the variables as the do not correspond to the text. Take the sum block out of the PID. Change circle intersection rule
with another term (more generic for the task performed). The first distributed fusion is on the steering signal, the second one is on the positioning for the
formation control.

where KP is the proportional gain.
The integral value is obtained by integrating the steering

signals over time as

s̃I,i(k) = KI

0X

⌧=�⌧I

s̃i(k + ⌧�k), (8)

where KI is the integral gain, ⌧I is the time interval for
the integration (typically between the initialization of the
system and the current time instant [40]) and �k is the
sampling time. We noticed that in our system the integration
within the interval [0, t] is not suitable as it leads to a high
rigidity of flying camera maneuvers. The responsiveness of
the cameras increases by decreasing the time interval the
integration operation. However, ⌧I cannot be zero because it
would lead to unstable maneuvers due to sharp responses of
the controller to sudden motion variations of the tracked target.

The derivative value is obtained by differentiating the
steering signal into two distinct time instants as

s̃D,i(k) = KD
1

⌧D
[s̃i(k) � s̃i(k � ⌧D�k)] , (9)

where KD is the derivative gain and ⌧D defines the time
interval to compute the differentiation. The larger ⌧D, the
more robust the steering signal to target speed variations or to
noisy measurements. The smaller ⌧D, the quicker the reaction
of a flying camera to target speed variations. Note that, a
sensitive reaction to speed variations may cause oscillations
due to sudden accelerations of the flying cameras, with the
possibility of losing the target from their fields of view. A
smooth reaction may not be sufficient to quickly adapt to the

target motion variations and the target may be lost by the flying
cameras.

The proportional, integral and derivative values are com-
bined to set a candidate PID controlled velocity

vc,i(k) = Ri(k)vi(k��k)+(s̃P,i(k) + s̃I,i(k) + s̃D,i(k))�k,
(10)

where vi(k � �k) is the velocity of the ith camera. Note
that the velocity is computed with the PID controller locally
(on each flying camera) and it needs to be further set via
consensus in order to maintain the formation geometry. The
following distributed fusion step is important as it helps the
flying cameras to drive towards the same direction.

Similarly to Eq. 6 the consensus on the candidate velocity
is computed as

ṽc,i(k) =

JbX

j=1

1

card(Di)

X

n2Di

ṽj
c,n(k) (11)

where Jb is the total number of iterations, ṽ0
c,n(k) = vc,n(k)

where n indexes one of the neighbors and ṽc,i(k) is the agreed
velocity of the ith flying camera that is used in the next step
to maintain the formation geometry.

V. FORMATION CONSTRAINED POSITIONING

In order to maintain the formation, it is important that each
flying camera knows its own desired direction, which it can
be given as prior at initialization [33], or it can be inferred
step by step via distributed fusion as we proposed in Sec. IV.
The algorithm proposed in [33] was formulated for cases with
two neighbors per agent (flying cameras in our case). The

×

1
|*#|

a

b

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. X, MONTH X 4

9) Adjust velocity and next goal position in order to
maintain formation geometry

10) Update desired velocity using newly computed goal
position

11) Actuate quadrotor dynamics

IV. DISTRIBUTED FUSION OF VISUALLY INFERRED
MANEUVERS

Flying cameras in formation can cooperate by sharing
steering signals among themselves to achieve a common task
(target tracking). Specifically, each flying camera self-positions
by locally computing maneuvers according to the detected
target of its camera plane and decisions made by neighbors.

Let the target detection success be modeled as a time-
independent Bernoulli distribution

p(xt,i(k)) =

(
pd target detected
1 � pd target not detected

, (1)

where p(xt,i(k)) is the probability of detecting the target on
the ith camera plane at k. The target position on the ith camera
plane is defined as

xt,i(k) =

(
�i(xt(k)) + !i(k) if target detected
; if target not detected

, (2)

where xt,i(k) 2 R2, �i : R3 ! R2 is the transformation to
project points from the 3D world to the 2D camera plane of
the ith flying camera, !i(k) = N (0, �!) is Gaussian noise that
models the target detection noise and ; is the null operation.

Target-motion dependent maneuvers are inferred by map-
ping xt,i(k) into steering signals for the quadrotor and this
mapping depends on Rc,i (Sec. III). The goal is to maintain
the target centered on the camera plane and deviations to this
position have to be mapped into maneuvers for the flying
camera to stay on target. The target motion on the camera
plane can be decomposed into two principal components that
allow the flying camera to perceive when the target turns,
and when it accelerates or decelerates. The former provides
the flying camera with the information about the steering
direction, while the latter provides information about the
steering magnification. Let then the steering signal be defined
as si(k) and composed of a direction term and a magnification
term. si(k) acts on the first and second body directions of
Ci(k), which are b1,i(k) and b2,i(k), respectively (Fig. 1).

The steering direction is computed by projecting xt,i(k)
onto two virtual axes on the camera plane that are used as a
reference for the flying camera to infer the target dynamics.
The origin of the virtual axes is located in the center of the
camera plane, and are defined as ex,i = �i(Ri(0)Rc,ie1) and
ey,i = �i(Ri(0)Rc,ie2). The steering direction component is
computed as

sdx,i(k) = xt,i(k) · ex,i

sdy,i(k) = xt,i(k) · ey,i (3)

where · is the dot product. Note that we consider sdz,i(k) = 0
(as in [7]) because we are not considering variations in altitude.
In practice its value can have fluctuations due to errors in the

measurement of the altitude [7], [41] and these variations can
be taken into account by looking at the region extent of the
detected target on the image plane. We do not address this
problem in this work.

A mapping function M : R ! R transforms the tar-
get position xt,i(k) to a steering magnification sm,i(k) =
(smx,i(k), smy,i(k))T . M is designed such that the steering
signal becomes more vigorous as the distance between xt,i(k)
and the center of the camera plane increases. Hence, we choose
M as Gaussian function, as opposed to a linear mapping, in
order to filter out little variations of the target position (e.g.
noisy detections). Whereas, large variations in position will be
interpreted as target maneuvers. The trend of M is regulated
via the variance �2

m 2 R as

smx,i(k) = M(sdx,i(k)) = 1 � exp

✓
�1

2

sdx,i(k)2

�2
m

◆

smy,i(k) = M(sdy,i(k)) = 1 � exp

✓
�1

2

sdy,i(k)2

�2
m

◆
. (4)

The further the target from the center of the camera plane (with
respect to both the axes) the larger smx,i(k) and smy,i(k).

The steering signal computed locally on each Ci(k) is the
combination of the steering magnification and direction

si(k) =


smx,isgn(sx,i(k))
smy,isgn(sy,i(k))

�
, (5)

where sgn() is the sign function.
In order to increase the robustness and to achieve consen-

sus on the steering maneuvers to accomplish, a distributed
consensus step with the neighbors Di is carried out by each
Ci(k). Let us define s̃i(k) as the steering signal achieved by
consensus that is obtained by iteratively receiving from and
communicating to neighbors s̃j

i (k), where j indicates the iter-
ation number and s̃0

i (k) = si(k). The steering magnification
component is thus calculated as

s̃i(k) =

JaX

j=1

1

card(Di)

X

n2Di

sj
n(k), (6)

where Ja is the total number of iterations, card() is the
cardinality of a set and Di is the set of neighbors (Sec. III).
The mean operation is chosen because, as opposed to the
median, it allows the fusion with three-camera neighborhoods.
The median operation can be used but it needs at least four-
camera neighborhoods in order not to have a disagreement
after the iterative process.

The steering signal s̃i(k), inferred from the camera plane,
is translated in body controls for the quadrotor using a PID
controller. A PID controller is composed of a three-term
control namely proportional, integral and derivative terms that
respectively ensure drive, tracking and fast response towards
the desired steering signal. The PID controller employs a
buffer that allows the integration and differentiation of steering
signals over time. The goal of the proposed PID controller is
to act on s̃i(k) (Eq. 6) and bring its value to zero in order to
center the target on each quadrotor’s camera plane.

The proportional value acts directly on s̃i(k) as

s̃P,i(k) = KP s̃i(k), (7)

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. X, MONTH X 5

Fig. 2. Block diagram. Need to fix the variables as the do not correspond to the text. Take the sum block out of the PID. Change circle intersection rule
with another term (more generic for the task performed). The first distributed fusion is on the steering signal, the second one is on the positioning for the
formation control.

where KP is the proportional gain.
The integral value is obtained by integrating the steering

signals over time as

s̃I,i(k) = KI

0X

⌧=�⌧I

s̃i(k + ⌧�k), (8)

where KI is the integral gain, ⌧I is the time interval for
the integration (typically between the initialization of the
system and the current time instant [40]) and �k is the
sampling time. We noticed that in our system the integration
within the interval [0, t] is not suitable as it leads to a high
rigidity of flying camera maneuvers. The responsiveness of
the cameras increases by decreasing the time interval the
integration operation. However, ⌧I cannot be zero because it
would lead to unstable maneuvers due to sharp responses of
the controller to sudden motion variations of the tracked target.

The derivative value is obtained by differentiating the
steering signal into two distinct time instants as

s̃D,i(k) = KD
1

⌧D
[s̃i(k) � s̃i(k � ⌧D�k)] , (9)

where KD is the derivative gain and ⌧D defines the time
interval to compute the differentiation. The larger ⌧D, the
more robust the steering signal to target speed variations or to
noisy measurements. The smaller ⌧D, the quicker the reaction
of a flying camera to target speed variations. Note that, a
sensitive reaction to speed variations may cause oscillations
due to sudden accelerations of the flying cameras, with the
possibility of losing the target from their fields of view. A
smooth reaction may not be sufficient to quickly adapt to the

target motion variations and the target may be lost by the flying
cameras.

The proportional, integral and derivative values are com-
bined to set a candidate PID controlled velocity

vc,i(k) = Ri(k)vi(k��k)+(s̃P,i(k) + s̃I,i(k) + s̃D,i(k))�k,
(10)

where vi(k � �k) is the velocity of the ith camera. Note
that the velocity is computed with the PID controller locally
(on each flying camera) and it needs to be further set via
consensus in order to maintain the formation geometry. The
following distributed fusion step is important as it helps the
flying cameras to drive towards the same direction.

Similarly to Eq. 6 the consensus on the candidate velocity
is computed as

ṽc,i(k) =

JbX

j=1

1

card(Di)

X

n2Di

ṽj
c,n(k) (11)

where Jb is the total number of iterations, ṽ0
c,n(k) = vc,n(k)

where n indexes one of the neighbors and ṽc,i(k) is the agreed
velocity of the ith flying camera that is used in the next step
to maintain the formation geometry.

V. FORMATION CONSTRAINED POSITIONING

In order to maintain the formation, it is important that each
flying camera knows its own desired direction, which it can
be given as prior at initialization [33], or it can be inferred
step by step via distributed fusion as we proposed in Sec. IV.
The algorithm proposed in [33] was formulated for cases with
two neighbors per agent (flying cameras in our case). The

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. X, MONTH X 5

Fig. 2. Block diagram. Need to fix the variables as the do not correspond to the text. Take the sum block out of the PID. Change circle intersection rule
with another term (more generic for the task performed). The first distributed fusion is on the steering signal, the second one is on the positioning for the
formation control.

where KP is the proportional gain.
The integral value is obtained by integrating the steering

signals over time as

s̃I,i(k) = KI

0X

⌧=�⌧I

s̃i(k + ⌧�k), (8)

where KI is the integral gain, ⌧I is the time interval for
the integration (typically between the initialization of the
system and the current time instant [40]) and �k is the
sampling time. We noticed that in our system the integration
within the interval [0, t] is not suitable as it leads to a high
rigidity of flying camera maneuvers. The responsiveness of
the cameras increases by decreasing the time interval the
integration operation. However, ⌧I cannot be zero because it
would lead to unstable maneuvers due to sharp responses of
the controller to sudden motion variations of the tracked target.

The derivative value is obtained by differentiating the
steering signal into two distinct time instants as

s̃D,i(k) = KD
1

⌧D
[s̃i(k) � s̃i(k � ⌧D�k)] , (9)

where KD is the derivative gain and ⌧D defines the time
interval to compute the differentiation. The larger ⌧D, the
more robust the steering signal to target speed variations or to
noisy measurements. The smaller ⌧D, the quicker the reaction
of a flying camera to target speed variations. Note that, a
sensitive reaction to speed variations may cause oscillations
due to sudden accelerations of the flying cameras, with the
possibility of losing the target from their fields of view. A
smooth reaction may not be sufficient to quickly adapt to the

target motion variations and the target may be lost by the flying
cameras.

The proportional, integral and derivative values are com-
bined to set a candidate PID controlled velocity

vc,i(k) = Ri(k)vi(k��k)+(s̃P,i(k) + s̃I,i(k) + s̃D,i(k))�k,
(10)

where vi(k � �k) is the velocity of the ith camera. Note
that the velocity is computed with the PID controller locally
(on each flying camera) and it needs to be further set via
consensus in order to maintain the formation geometry. The
following distributed fusion step is important as it helps the
flying cameras to drive towards the same direction.

Similarly to Eq. 6 the consensus on the candidate velocity
is computed as

ṽc,i(k) =

JbX

j=1

1

card(Di)

X

n2Di

ṽj
c,n(k) (11)

where Jb is the total number of iterations, ṽ0
c,n(k) = vc,n(k)

where n indexes one of the neighbors and ṽc,i(k) is the agreed
velocity of the ith flying camera that is used in the next step
to maintain the formation geometry.

V. FORMATION CONSTRAINED POSITIONING

In order to maintain the formation, it is important that each
flying camera knows its own desired direction, which it can
be given as prior at initialization [33], or it can be inferred
step by step via distributed fusion as we proposed in Sec. IV.
The algorithm proposed in [33] was formulated for cases with
two neighbors per agent (flying cameras in our case). The

buffer

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. X, MONTH X 5

Fig. 2. Block diagram. Need to fix the variables as the do not correspond to the text. Take the sum block out of the PID. Change circle intersection rule
with another term (more generic for the task performed). The first distributed fusion is on the steering signal, the second one is on the positioning for the
formation control.

where KP is the proportional gain.
The integral value is obtained by integrating the steering

signals over time as

s̃I,i(k) = KI

0X

⌧=�⌧I

s̃i(k + ⌧�k), (8)

where KI is the integral gain, ⌧I is the time interval for
the integration (typically between the initialization of the
system and the current time instant [40]) and �k is the
sampling time. We noticed that in our system the integration
within the interval [0, t] is not suitable as it leads to a high
rigidity of flying camera maneuvers. The responsiveness of
the cameras increases by decreasing the time interval the
integration operation. However, ⌧I cannot be zero because it
would lead to unstable maneuvers due to sharp responses of
the controller to sudden motion variations of the tracked target.

The derivative value is obtained by differentiating the
steering signal into two distinct time instants as

s̃D,i(k) = KD
1

⌧D
[s̃i(k) � s̃i(k � ⌧D�k)] , (9)

where KD is the derivative gain and ⌧D defines the time
interval to compute the differentiation. The larger ⌧D, the
more robust the steering signal to target speed variations or to
noisy measurements. The smaller ⌧D, the quicker the reaction
of a flying camera to target speed variations. Note that, a
sensitive reaction to speed variations may cause oscillations
due to sudden accelerations of the flying cameras, with the
possibility of losing the target from their fields of view. A
smooth reaction may not be sufficient to quickly adapt to the

target motion variations and the target may be lost by the flying
cameras.

The proportional, integral and derivative values are com-
bined to set a candidate PID controlled velocity

vc,i(k) = Ri(k)vi(k��k)+(s̃P,i(k) + s̃I,i(k) + s̃D,i(k))�k,
(10)

where vi(k � �k) is the velocity of the ith camera. Note
that the velocity is computed with the PID controller locally
(on each flying camera) and it needs to be further set via
consensus in order to maintain the formation geometry. The
following distributed fusion step is important as it helps the
flying cameras to drive towards the same direction.

Similarly to Eq. 6 the consensus on the candidate velocity
is computed as

ṽc,i(k) =

JbX

j=1

1

card(Di)

X

n2Di

ṽj
c,n(k) (11)

where Jb is the total number of iterations, ṽ0
c,n(k) = vc,n(k)

where n indexes one of the neighbors and ṽc,i(k) is the agreed
velocity of the ith flying camera that is used in the next step
to maintain the formation geometry.

V. FORMATION CONSTRAINED POSITIONING

In order to maintain the formation, it is important that each
flying camera knows its own desired direction, which it can
be given as prior at initialization [33], or it can be inferred
step by step via distributed fusion as we proposed in Sec. IV.
The algorithm proposed in [33] was formulated for cases with
two neighbors per agent (flying cameras in our case). The

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. X, MONTH X 5

Fig. 2. Block diagram. Need to fix the variables as the do not correspond to the text. Take the sum block out of the PID. Change circle intersection rule
with another term (more generic for the task performed). The first distributed fusion is on the steering signal, the second one is on the positioning for the
formation control.

where KP is the proportional gain.
The integral value is obtained by integrating the steering

signals over time as

s̃I,i(k) = KI

0X

⌧=�⌧I

s̃i(k + ⌧�k), (8)

where KI is the integral gain, ⌧I is the time interval for
the integration (typically between the initialization of the
system and the current time instant [40]) and �k is the
sampling time. We noticed that in our system the integration
within the interval [0, t] is not suitable as it leads to a high
rigidity of flying camera maneuvers. The responsiveness of
the cameras increases by decreasing the time interval the
integration operation. However, ⌧I cannot be zero because it
would lead to unstable maneuvers due to sharp responses of
the controller to sudden motion variations of the tracked target.

The derivative value is obtained by differentiating the
steering signal into two distinct time instants as

s̃D,i(k) = KD
1

⌧D
[s̃i(k) � s̃i(k � ⌧D�k)] , (9)

where KD is the derivative gain and ⌧D defines the time
interval to compute the differentiation. The larger ⌧D, the
more robust the steering signal to target speed variations or to
noisy measurements. The smaller ⌧D, the quicker the reaction
of a flying camera to target speed variations. Note that, a
sensitive reaction to speed variations may cause oscillations
due to sudden accelerations of the flying cameras, with the
possibility of losing the target from their fields of view. A
smooth reaction may not be sufficient to quickly adapt to the

target motion variations and the target may be lost by the flying
cameras.

The proportional, integral and derivative values are com-
bined to set a candidate PID controlled velocity

vc,i(k) = Ri(k)vi(k��k)+(s̃P,i(k) + s̃I,i(k) + s̃D,i(k))�k,
(10)

where vi(k � �k) is the velocity of the ith camera. Note
that the velocity is computed with the PID controller locally
(on each flying camera) and it needs to be further set via
consensus in order to maintain the formation geometry. The
following distributed fusion step is important as it helps the
flying cameras to drive towards the same direction.

Similarly to Eq. 6 the consensus on the candidate velocity
is computed as

ṽc,i(k) =

JbX

j=1

1

card(Di)

X

n2Di

ṽj
c,n(k) (11)

where Jb is the total number of iterations, ṽ0
c,n(k) = vc,n(k)

where n indexes one of the neighbors and ṽc,i(k) is the agreed
velocity of the ith flying camera that is used in the next step
to maintain the formation geometry.

V. FORMATION CONSTRAINED POSITIONING

In order to maintain the formation, it is important that each
flying camera knows its own desired direction, which it can
be given as prior at initialization [33], or it can be inferred
step by step via distributed fusion as we proposed in Sec. IV.
The algorithm proposed in [33] was formulated for cases with
two neighbors per agent (flying cameras in our case). The

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. X, MONTH X 5

Fig. 2. Block diagram. Need to fix the variables as the do not correspond to the text. Take the sum block out of the PID. Change circle intersection rule
with another term (more generic for the task performed). The first distributed fusion is on the steering signal, the second one is on the positioning for the
formation control.

where KP is the proportional gain.
The integral value is obtained by integrating the steering

signals over time as

s̃I,i(k) = KI

0X

⌧=�⌧I

s̃i(k + ⌧�k), (8)

where KI is the integral gain, ⌧I is the time interval for
the integration (typically between the initialization of the
system and the current time instant [40]) and �k is the
sampling time. We noticed that in our system the integration
within the interval [0, t] is not suitable as it leads to a high
rigidity of flying camera maneuvers. The responsiveness of
the cameras increases by decreasing the time interval the
integration operation. However, ⌧I cannot be zero because it
would lead to unstable maneuvers due to sharp responses of
the controller to sudden motion variations of the tracked target.

The derivative value is obtained by differentiating the
steering signal into two distinct time instants as

s̃D,i(k) = KD
1

⌧D
[s̃i(k) � s̃i(k � ⌧D�k)] , (9)

where KD is the derivative gain and ⌧D defines the time
interval to compute the differentiation. The larger ⌧D, the
more robust the steering signal to target speed variations or to
noisy measurements. The smaller ⌧D, the quicker the reaction
of a flying camera to target speed variations. Note that, a
sensitive reaction to speed variations may cause oscillations
due to sudden accelerations of the flying cameras, with the
possibility of losing the target from their fields of view. A
smooth reaction may not be sufficient to quickly adapt to the

target motion variations and the target may be lost by the flying
cameras.

The proportional, integral and derivative values are com-
bined to set a candidate PID controlled velocity

vc,i(k) = Ri(k)vi(k��k)+(s̃P,i(k) + s̃I,i(k) + s̃D,i(k))�k,
(10)

where vi(k � �k) is the velocity of the ith camera. Note
that the velocity is computed with the PID controller locally
(on each flying camera) and it needs to be further set via
consensus in order to maintain the formation geometry. The
following distributed fusion step is important as it helps the
flying cameras to drive towards the same direction.

Similarly to Eq. 6 the consensus on the candidate velocity
is computed as

ṽc,i(k) =

JbX

j=1

1

card(Di)

X

n2Di

ṽj
c,n(k) (11)

where Jb is the total number of iterations, ṽ0
c,n(k) = vc,n(k)

where n indexes one of the neighbors and ṽc,i(k) is the agreed
velocity of the ith flying camera that is used in the next step
to maintain the formation geometry.

V. FORMATION CONSTRAINED POSITIONING

In order to maintain the formation, it is important that each
flying camera knows its own desired direction, which it can
be given as prior at initialization [33], or it can be inferred
step by step via distributed fusion as we proposed in Sec. IV.
The algorithm proposed in [33] was formulated for cases with
two neighbors per agent (flying cameras in our case). The

×

1
|*#|

a

b

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. X, MONTH X 5

Fig. 2. Block diagram. Need to fix the variables as the do not correspond to the text. Take the sum block out of the PID. Change circle intersection rule
with another term (more generic for the task performed). The first distributed fusion is on the steering signal, the second one is on the positioning for the
formation control.

where KP is the proportional gain.
The integral value is obtained by integrating the steering

signals over time as

s̃I,i(k) = KI

0X

⌧=�⌧I

s̃i(k + ⌧�k), (8)

where KI is the integral gain, ⌧I is the time interval for
the integration (typically between the initialization of the
system and the current time instant [40]) and �k is the
sampling time. We noticed that in our system the integration
within the interval [0, t] is not suitable as it leads to a high
rigidity of flying camera maneuvers. The responsiveness of
the cameras increases by decreasing the time interval the
integration operation. However, ⌧I cannot be zero because it
would lead to unstable maneuvers due to sharp responses of
the controller to sudden motion variations of the tracked target.

The derivative value is obtained by differentiating the
steering signal into two distinct time instants as

s̃D,i(k) = KD
1

⌧D
[s̃i(k) � s̃i(k � ⌧D�k)] , (9)

where KD is the derivative gain and ⌧D defines the time
interval to compute the differentiation. The larger ⌧D, the
more robust the steering signal to target speed variations or to
noisy measurements. The smaller ⌧D, the quicker the reaction
of a flying camera to target speed variations. Note that, a
sensitive reaction to speed variations may cause oscillations
due to sudden accelerations of the flying cameras, with the
possibility of losing the target from their fields of view. A
smooth reaction may not be sufficient to quickly adapt to the

target motion variations and the target may be lost by the flying
cameras.

The proportional, integral and derivative values are com-
bined to set a candidate PID controlled velocity

vc,i(k) = Ri(k)vi(k��k)+(s̃P,i(k) + s̃I,i(k) + s̃D,i(k))�k,
(10)

where vi(k � �k) is the velocity of the ith camera. Note
that the velocity is computed with the PID controller locally
(on each flying camera) and it needs to be further set via
consensus in order to maintain the formation geometry. The
following distributed fusion step is important as it helps the
flying cameras to drive towards the same direction.

Similarly to Eq. 6 the consensus on the candidate velocity
is computed as

ṽc,i(k) =

JbX

j=1

1

card(Di)

X

n2Di

ṽj
c,n(k) (11)

where Jb is the total number of iterations, ṽ0
c,n(k) = vc,n(k)

where n indexes one of the neighbors and ṽc,i(k) is the agreed
velocity of the ith flying camera that is used in the next step
to maintain the formation geometry.

V. FORMATION CONSTRAINED POSITIONING

In order to maintain the formation, it is important that each
flying camera knows its own desired direction, which it can
be given as prior at initialization [33], or it can be inferred
step by step via distributed fusion as we proposed in Sec. IV.
The algorithm proposed in [33] was formulated for cases with
two neighbors per agent (flying cameras in our case). The

consensus algorithms

buffer

!#(%) !̃+ % + !̃- % + !̃. % 	
0#(%)

01#(%) 23,#(%)

!̃#(%)

target
detector

sensing
perception
& response

formation
maintenance

agent
dynamics

buffer

communication

collaborative sensing

consensus algorithms
proximity

sensor

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. X, MONTH X 5

Fig. 2. Block diagram. Need to fix the variables as the do not correspond to the text. Take the sum block out of the PID. Change circle intersection rule
with another term (more generic for the task performed). The first distributed fusion is on the steering signal, the second one is on the positioning for the
formation control.

where KP is the proportional gain.
The integral value is obtained by integrating the steering

signals over time as

s̃I,i(k) = KI

0X

⌧=�⌧I

s̃i(k + ⌧�k), (8)

where KI is the integral gain, ⌧I is the time interval for
the integration (typically between the initialization of the
system and the current time instant [40]) and �k is the
sampling time. We noticed that in our system the integration
within the interval [0, t] is not suitable as it leads to a high
rigidity of flying camera maneuvers. The responsiveness of
the cameras increases by decreasing the time interval the
integration operation. However, ⌧I cannot be zero because it
would lead to unstable maneuvers due to sharp responses of
the controller to sudden motion variations of the tracked target.

The derivative value is obtained by differentiating the
steering signal into two distinct time instants as

s̃D,i(k) = KD
1

⌧D
[s̃i(k) � s̃i(k � ⌧D�k)] , (9)

where KD is the derivative gain and ⌧D defines the time
interval to compute the differentiation. The larger ⌧D, the
more robust the steering signal to target speed variations or to
noisy measurements. The smaller ⌧D, the quicker the reaction
of a flying camera to target speed variations. Note that, a
sensitive reaction to speed variations may cause oscillations
due to sudden accelerations of the flying cameras, with the
possibility of losing the target from their fields of view. A
smooth reaction may not be sufficient to quickly adapt to the

target motion variations and the target may be lost by the flying
cameras.

The proportional, integral and derivative values are com-
bined to set a candidate PID controlled velocity

vc,i(k) = Ri(k)vi(k��k)+(s̃P,i(k) + s̃I,i(k) + s̃D,i(k))�k,
(10)

where vi(k � �k) is the velocity of the ith camera. Note
that the velocity is computed with the PID controller locally
(on each flying camera) and it needs to be further set via
consensus in order to maintain the formation geometry. The
following distributed fusion step is important as it helps the
flying cameras to drive towards the same direction.

Similarly to Eq. 6 the consensus on the candidate velocity
is computed as

ṽc,i(k) =

JbX

j=1

1

card(Di)

X

n2Di

ṽj
c,n(k) (11)

where Jb is the total number of iterations, ṽ0
c,n(k) = vc,n(k)

where n indexes one of the neighbors and ṽc,i(k) is the agreed
velocity of the ith flying camera that is used in the next step
to maintain the formation geometry.

V. FORMATION CONSTRAINED POSITIONING

In order to maintain the formation, it is important that each
flying camera knows its own desired direction, which it can
be given as prior at initialization [33], or it can be inferred
step by step via distributed fusion as we proposed in Sec. IV.
The algorithm proposed in [33] was formulated for cases with
two neighbors per agent (flying cameras in our case). The

×

1
|*#|

loop
a

b

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. X, MONTH X 4

9) Adjust velocity and next goal position in order to
maintain formation geometry

10) Update desired velocity using newly computed goal
position

11) Actuate quadrotor dynamics

IV. DISTRIBUTED FUSION OF VISUALLY INFERRED
MANEUVERS

Flying cameras in formation can cooperate by sharing
steering signals among themselves to achieve a common task
(target tracking). Specifically, each flying camera self-positions
by locally computing maneuvers according to the detected
target of its camera plane and decisions made by neighbors.

Let the target detection success be modeled as a time-
independent Bernoulli distribution

p(xt,i(k)) =

(
pd target detected
1 � pd target not detected

, (1)

where p(xt,i(k)) is the probability of detecting the target on
the ith camera plane at k. The target position on the ith camera
plane is defined as

xt,i(k) =

(
�i(xt(k)) + !i(k) if target detected
; if target not detected

, (2)

where xt,i(k) 2 R2, �i : R3 ! R2 is the transformation to
project points from the 3D world to the 2D camera plane of
the ith flying camera, !i(k) = N (0, �!) is Gaussian noise that
models the target detection noise and ; is the null operation.

Target-motion dependent maneuvers are inferred by map-
ping xt,i(k) into steering signals for the quadrotor and this
mapping depends on Rc,i (Sec. III). The goal is to maintain
the target centered on the camera plane and deviations to this
position have to be mapped into maneuvers for the flying
camera to stay on target. The target motion on the camera
plane can be decomposed into two principal components that
allow the flying camera to perceive when the target turns,
and when it accelerates or decelerates. The former provides
the flying camera with the information about the steering
direction, while the latter provides information about the
steering magnification. Let then the steering signal be defined
as si(k) and composed of a direction term and a magnification
term. si(k) acts on the first and second body directions of
Ci(k), which are b1,i(k) and b2,i(k), respectively (Fig. 1).

The steering direction is computed by projecting xt,i(k)
onto two virtual axes on the camera plane that are used as a
reference for the flying camera to infer the target dynamics.
The origin of the virtual axes is located in the center of the
camera plane, and are defined as ex,i = �i(Ri(0)Rc,ie1) and
ey,i = �i(Ri(0)Rc,ie2). The steering direction component is
computed as

sdx,i(k) = xt,i(k) · ex,i

sdy,i(k) = xt,i(k) · ey,i (3)

where · is the dot product. Note that we consider sdz,i(k) = 0
(as in [7]) because we are not considering variations in altitude.
In practice its value can have fluctuations due to errors in the

measurement of the altitude [7], [41] and these variations can
be taken into account by looking at the region extent of the
detected target on the image plane. We do not address this
problem in this work.

A mapping function M : R ! R transforms the tar-
get position xt,i(k) to a steering magnification sm,i(k) =
(smx,i(k), smy,i(k))T . M is designed such that the steering
signal becomes more vigorous as the distance between xt,i(k)
and the center of the camera plane increases. Hence, we choose
M as Gaussian function, as opposed to a linear mapping, in
order to filter out little variations of the target position (e.g.
noisy detections). Whereas, large variations in position will be
interpreted as target maneuvers. The trend of M is regulated
via the variance �2

m 2 R as

smx,i(k) = M(sdx,i(k)) = 1 � exp

✓
�1

2

sdx,i(k)2

�2
m

◆

smy,i(k) = M(sdy,i(k)) = 1 � exp

✓
�1

2

sdy,i(k)2

�2
m

◆
. (4)

The further the target from the center of the camera plane (with
respect to both the axes) the larger smx,i(k) and smy,i(k).

The steering signal computed locally on each Ci(k) is the
combination of the steering magnification and direction

si(k) =


smx,isgn(sx,i(k))
smy,isgn(sy,i(k))

�
, (5)

where sgn() is the sign function.
In order to increase the robustness and to achieve consen-

sus on the steering maneuvers to accomplish, a distributed
consensus step with the neighbors Di is carried out by each
Ci(k). Let us define s̃i(k) as the steering signal achieved by
consensus that is obtained by iteratively receiving from and
communicating to neighbors s̃j

i (k), where j indicates the iter-
ation number and s̃0

i (k) = si(k). The steering magnification
component is thus calculated as

s̃i(k) =

JaX

j=1

1

card(Di)

X

n2Di

sj
n(k), (6)

where Ja is the total number of iterations, card() is the
cardinality of a set and Di is the set of neighbors (Sec. III).
The mean operation is chosen because, as opposed to the
median, it allows the fusion with three-camera neighborhoods.
The median operation can be used but it needs at least four-
camera neighborhoods in order not to have a disagreement
after the iterative process.

The steering signal s̃i(k), inferred from the camera plane,
is translated in body controls for the quadrotor using a PID
controller. A PID controller is composed of a three-term
control namely proportional, integral and derivative terms that
respectively ensure drive, tracking and fast response towards
the desired steering signal. The PID controller employs a
buffer that allows the integration and differentiation of steering
signals over time. The goal of the proposed PID controller is
to act on s̃i(k) (Eq. 6) and bring its value to zero in order to
center the target on each quadrotor’s camera plane.

The proportional value acts directly on s̃i(k) as

s̃P,i(k) = KP s̃i(k), (7)

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. X, MONTH X 5

Fig. 2. Block diagram. Need to fix the variables as the do not correspond to the text. Take the sum block out of the PID. Change circle intersection rule
with another term (more generic for the task performed). The first distributed fusion is on the steering signal, the second one is on the positioning for the
formation control.

where KP is the proportional gain.
The integral value is obtained by integrating the steering

signals over time as

s̃I,i(k) = KI

0X

⌧=�⌧I

s̃i(k + ⌧�k), (8)

where KI is the integral gain, ⌧I is the time interval for
the integration (typically between the initialization of the
system and the current time instant [40]) and �k is the
sampling time. We noticed that in our system the integration
within the interval [0, t] is not suitable as it leads to a high
rigidity of flying camera maneuvers. The responsiveness of
the cameras increases by decreasing the time interval the
integration operation. However, ⌧I cannot be zero because it
would lead to unstable maneuvers due to sharp responses of
the controller to sudden motion variations of the tracked target.

The derivative value is obtained by differentiating the
steering signal into two distinct time instants as

s̃D,i(k) = KD
1

⌧D
[s̃i(k) � s̃i(k � ⌧D�k)] , (9)

where KD is the derivative gain and ⌧D defines the time
interval to compute the differentiation. The larger ⌧D, the
more robust the steering signal to target speed variations or to
noisy measurements. The smaller ⌧D, the quicker the reaction
of a flying camera to target speed variations. Note that, a
sensitive reaction to speed variations may cause oscillations
due to sudden accelerations of the flying cameras, with the
possibility of losing the target from their fields of view. A
smooth reaction may not be sufficient to quickly adapt to the

target motion variations and the target may be lost by the flying
cameras.

The proportional, integral and derivative values are com-
bined to set a candidate PID controlled velocity

vc,i(k) = Ri(k)vi(k��k)+(s̃P,i(k) + s̃I,i(k) + s̃D,i(k))�k,
(10)

where vi(k � �k) is the velocity of the ith camera. Note
that the velocity is computed with the PID controller locally
(on each flying camera) and it needs to be further set via
consensus in order to maintain the formation geometry. The
following distributed fusion step is important as it helps the
flying cameras to drive towards the same direction.

Similarly to Eq. 6 the consensus on the candidate velocity
is computed as

ṽc,i(k) =

JbX

j=1

1

card(Di)

X

n2Di

ṽj
c,n(k) (11)

where Jb is the total number of iterations, ṽ0
c,n(k) = vc,n(k)

where n indexes one of the neighbors and ṽc,i(k) is the agreed
velocity of the ith flying camera that is used in the next step
to maintain the formation geometry.

V. FORMATION CONSTRAINED POSITIONING

In order to maintain the formation, it is important that each
flying camera knows its own desired direction, which it can
be given as prior at initialization [33], or it can be inferred
step by step via distributed fusion as we proposed in Sec. IV.
The algorithm proposed in [33] was formulated for cases with
two neighbors per agent (flying cameras in our case). The

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. X, MONTH X 5

Fig. 2. Block diagram. Need to fix the variables as the do not correspond to the text. Take the sum block out of the PID. Change circle intersection rule
with another term (more generic for the task performed). The first distributed fusion is on the steering signal, the second one is on the positioning for the
formation control.

where KP is the proportional gain.
The integral value is obtained by integrating the steering

signals over time as

s̃I,i(k) = KI

0X

⌧=�⌧I

s̃i(k + ⌧�k), (8)

where KI is the integral gain, ⌧I is the time interval for
the integration (typically between the initialization of the
system and the current time instant [40]) and �k is the
sampling time. We noticed that in our system the integration
within the interval [0, t] is not suitable as it leads to a high
rigidity of flying camera maneuvers. The responsiveness of
the cameras increases by decreasing the time interval the
integration operation. However, ⌧I cannot be zero because it
would lead to unstable maneuvers due to sharp responses of
the controller to sudden motion variations of the tracked target.

The derivative value is obtained by differentiating the
steering signal into two distinct time instants as

s̃D,i(k) = KD
1

⌧D
[s̃i(k) � s̃i(k � ⌧D�k)] , (9)

where KD is the derivative gain and ⌧D defines the time
interval to compute the differentiation. The larger ⌧D, the
more robust the steering signal to target speed variations or to
noisy measurements. The smaller ⌧D, the quicker the reaction
of a flying camera to target speed variations. Note that, a
sensitive reaction to speed variations may cause oscillations
due to sudden accelerations of the flying cameras, with the
possibility of losing the target from their fields of view. A
smooth reaction may not be sufficient to quickly adapt to the

target motion variations and the target may be lost by the flying
cameras.

The proportional, integral and derivative values are com-
bined to set a candidate PID controlled velocity

vc,i(k) = Ri(k)vi(k��k)+(s̃P,i(k) + s̃I,i(k) + s̃D,i(k))�k,
(10)

where vi(k � �k) is the velocity of the ith camera. Note
that the velocity is computed with the PID controller locally
(on each flying camera) and it needs to be further set via
consensus in order to maintain the formation geometry. The
following distributed fusion step is important as it helps the
flying cameras to drive towards the same direction.

Similarly to Eq. 6 the consensus on the candidate velocity
is computed as

ṽc,i(k) =

JbX

j=1

1

card(Di)

X

n2Di

ṽj
c,n(k) (11)

where Jb is the total number of iterations, ṽ0
c,n(k) = vc,n(k)

where n indexes one of the neighbors and ṽc,i(k) is the agreed
velocity of the ith flying camera that is used in the next step
to maintain the formation geometry.

V. FORMATION CONSTRAINED POSITIONING

In order to maintain the formation, it is important that each
flying camera knows its own desired direction, which it can
be given as prior at initialization [33], or it can be inferred
step by step via distributed fusion as we proposed in Sec. IV.
The algorithm proposed in [33] was formulated for cases with
two neighbors per agent (flying cameras in our case). The

buffer

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. X, MONTH X 5

Fig. 2. Block diagram. Need to fix the variables as the do not correspond to the text. Take the sum block out of the PID. Change circle intersection rule
with another term (more generic for the task performed). The first distributed fusion is on the steering signal, the second one is on the positioning for the
formation control.

where KP is the proportional gain.
The integral value is obtained by integrating the steering

signals over time as

s̃I,i(k) = KI

0X

⌧=�⌧I

s̃i(k + ⌧�k), (8)

where KI is the integral gain, ⌧I is the time interval for
the integration (typically between the initialization of the
system and the current time instant [40]) and �k is the
sampling time. We noticed that in our system the integration
within the interval [0, t] is not suitable as it leads to a high
rigidity of flying camera maneuvers. The responsiveness of
the cameras increases by decreasing the time interval the
integration operation. However, ⌧I cannot be zero because it
would lead to unstable maneuvers due to sharp responses of
the controller to sudden motion variations of the tracked target.

The derivative value is obtained by differentiating the
steering signal into two distinct time instants as

s̃D,i(k) = KD
1

⌧D
[s̃i(k) � s̃i(k � ⌧D�k)] , (9)

where KD is the derivative gain and ⌧D defines the time
interval to compute the differentiation. The larger ⌧D, the
more robust the steering signal to target speed variations or to
noisy measurements. The smaller ⌧D, the quicker the reaction
of a flying camera to target speed variations. Note that, a
sensitive reaction to speed variations may cause oscillations
due to sudden accelerations of the flying cameras, with the
possibility of losing the target from their fields of view. A
smooth reaction may not be sufficient to quickly adapt to the

target motion variations and the target may be lost by the flying
cameras.

The proportional, integral and derivative values are com-
bined to set a candidate PID controlled velocity

vc,i(k) = Ri(k)vi(k��k)+(s̃P,i(k) + s̃I,i(k) + s̃D,i(k))�k,
(10)

where vi(k � �k) is the velocity of the ith camera. Note
that the velocity is computed with the PID controller locally
(on each flying camera) and it needs to be further set via
consensus in order to maintain the formation geometry. The
following distributed fusion step is important as it helps the
flying cameras to drive towards the same direction.

Similarly to Eq. 6 the consensus on the candidate velocity
is computed as

ṽc,i(k) =

JbX

j=1

1

card(Di)

X

n2Di

ṽj
c,n(k) (11)

where Jb is the total number of iterations, ṽ0
c,n(k) = vc,n(k)

where n indexes one of the neighbors and ṽc,i(k) is the agreed
velocity of the ith flying camera that is used in the next step
to maintain the formation geometry.

V. FORMATION CONSTRAINED POSITIONING

In order to maintain the formation, it is important that each
flying camera knows its own desired direction, which it can
be given as prior at initialization [33], or it can be inferred
step by step via distributed fusion as we proposed in Sec. IV.
The algorithm proposed in [33] was formulated for cases with
two neighbors per agent (flying cameras in our case). The

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. X, MONTH X 5

Fig. 2. Block diagram. Need to fix the variables as the do not correspond to the text. Take the sum block out of the PID. Change circle intersection rule
with another term (more generic for the task performed). The first distributed fusion is on the steering signal, the second one is on the positioning for the
formation control.

where KP is the proportional gain.
The integral value is obtained by integrating the steering

signals over time as

s̃I,i(k) = KI

0X

⌧=�⌧I

s̃i(k + ⌧�k), (8)

where KI is the integral gain, ⌧I is the time interval for
the integration (typically between the initialization of the
system and the current time instant [40]) and �k is the
sampling time. We noticed that in our system the integration
within the interval [0, t] is not suitable as it leads to a high
rigidity of flying camera maneuvers. The responsiveness of
the cameras increases by decreasing the time interval the
integration operation. However, ⌧I cannot be zero because it
would lead to unstable maneuvers due to sharp responses of
the controller to sudden motion variations of the tracked target.

The derivative value is obtained by differentiating the
steering signal into two distinct time instants as

s̃D,i(k) = KD
1

⌧D
[s̃i(k) � s̃i(k � ⌧D�k)] , (9)

where KD is the derivative gain and ⌧D defines the time
interval to compute the differentiation. The larger ⌧D, the
more robust the steering signal to target speed variations or to
noisy measurements. The smaller ⌧D, the quicker the reaction
of a flying camera to target speed variations. Note that, a
sensitive reaction to speed variations may cause oscillations
due to sudden accelerations of the flying cameras, with the
possibility of losing the target from their fields of view. A
smooth reaction may not be sufficient to quickly adapt to the

target motion variations and the target may be lost by the flying
cameras.

The proportional, integral and derivative values are com-
bined to set a candidate PID controlled velocity

vc,i(k) = Ri(k)vi(k��k)+(s̃P,i(k) + s̃I,i(k) + s̃D,i(k))�k,
(10)

where vi(k � �k) is the velocity of the ith camera. Note
that the velocity is computed with the PID controller locally
(on each flying camera) and it needs to be further set via
consensus in order to maintain the formation geometry. The
following distributed fusion step is important as it helps the
flying cameras to drive towards the same direction.

Similarly to Eq. 6 the consensus on the candidate velocity
is computed as

ṽc,i(k) =

JbX

j=1

1

card(Di)

X

n2Di

ṽj
c,n(k) (11)

where Jb is the total number of iterations, ṽ0
c,n(k) = vc,n(k)

where n indexes one of the neighbors and ṽc,i(k) is the agreed
velocity of the ith flying camera that is used in the next step
to maintain the formation geometry.

V. FORMATION CONSTRAINED POSITIONING

In order to maintain the formation, it is important that each
flying camera knows its own desired direction, which it can
be given as prior at initialization [33], or it can be inferred
step by step via distributed fusion as we proposed in Sec. IV.
The algorithm proposed in [33] was formulated for cases with
two neighbors per agent (flying cameras in our case). The

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. X, MONTH X 5

Fig. 2. Block diagram. Need to fix the variables as the do not correspond to the text. Take the sum block out of the PID. Change circle intersection rule
with another term (more generic for the task performed). The first distributed fusion is on the steering signal, the second one is on the positioning for the
formation control.

where KP is the proportional gain.
The integral value is obtained by integrating the steering

signals over time as

s̃I,i(k) = KI

0X

⌧=�⌧I

s̃i(k + ⌧�k), (8)

where KI is the integral gain, ⌧I is the time interval for
the integration (typically between the initialization of the
system and the current time instant [40]) and �k is the
sampling time. We noticed that in our system the integration
within the interval [0, t] is not suitable as it leads to a high
rigidity of flying camera maneuvers. The responsiveness of
the cameras increases by decreasing the time interval the
integration operation. However, ⌧I cannot be zero because it
would lead to unstable maneuvers due to sharp responses of
the controller to sudden motion variations of the tracked target.

The derivative value is obtained by differentiating the
steering signal into two distinct time instants as

s̃D,i(k) = KD
1

⌧D
[s̃i(k) � s̃i(k � ⌧D�k)] , (9)

where KD is the derivative gain and ⌧D defines the time
interval to compute the differentiation. The larger ⌧D, the
more robust the steering signal to target speed variations or to
noisy measurements. The smaller ⌧D, the quicker the reaction
of a flying camera to target speed variations. Note that, a
sensitive reaction to speed variations may cause oscillations
due to sudden accelerations of the flying cameras, with the
possibility of losing the target from their fields of view. A
smooth reaction may not be sufficient to quickly adapt to the

target motion variations and the target may be lost by the flying
cameras.

The proportional, integral and derivative values are com-
bined to set a candidate PID controlled velocity

vc,i(k) = Ri(k)vi(k��k)+(s̃P,i(k) + s̃I,i(k) + s̃D,i(k))�k,
(10)

where vi(k � �k) is the velocity of the ith camera. Note
that the velocity is computed with the PID controller locally
(on each flying camera) and it needs to be further set via
consensus in order to maintain the formation geometry. The
following distributed fusion step is important as it helps the
flying cameras to drive towards the same direction.

Similarly to Eq. 6 the consensus on the candidate velocity
is computed as

ṽc,i(k) =

JbX

j=1

1

card(Di)

X

n2Di

ṽj
c,n(k) (11)

where Jb is the total number of iterations, ṽ0
c,n(k) = vc,n(k)

where n indexes one of the neighbors and ṽc,i(k) is the agreed
velocity of the ith flying camera that is used in the next step
to maintain the formation geometry.

V. FORMATION CONSTRAINED POSITIONING

In order to maintain the formation, it is important that each
flying camera knows its own desired direction, which it can
be given as prior at initialization [33], or it can be inferred
step by step via distributed fusion as we proposed in Sec. IV.
The algorithm proposed in [33] was formulated for cases with
two neighbors per agent (flying cameras in our case). The

×

1
|*#|

loop
a

b

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. X, MONTH X 5

Fig. 2. Block diagram. Need to fix the variables as the do not correspond to the text. Take the sum block out of the PID. Change circle intersection rule
with another term (more generic for the task performed). The first distributed fusion is on the steering signal, the second one is on the positioning for the
formation control.

where KP is the proportional gain.
The integral value is obtained by integrating the steering

signals over time as

s̃I,i(k) = KI

0X

⌧=�⌧I

s̃i(k + ⌧�k), (8)

where KI is the integral gain, ⌧I is the time interval for
the integration (typically between the initialization of the
system and the current time instant [40]) and �k is the
sampling time. We noticed that in our system the integration
within the interval [0, t] is not suitable as it leads to a high
rigidity of flying camera maneuvers. The responsiveness of
the cameras increases by decreasing the time interval the
integration operation. However, ⌧I cannot be zero because it
would lead to unstable maneuvers due to sharp responses of
the controller to sudden motion variations of the tracked target.

The derivative value is obtained by differentiating the
steering signal into two distinct time instants as

s̃D,i(k) = KD
1

⌧D
[s̃i(k) � s̃i(k � ⌧D�k)] , (9)

where KD is the derivative gain and ⌧D defines the time
interval to compute the differentiation. The larger ⌧D, the
more robust the steering signal to target speed variations or to
noisy measurements. The smaller ⌧D, the quicker the reaction
of a flying camera to target speed variations. Note that, a
sensitive reaction to speed variations may cause oscillations
due to sudden accelerations of the flying cameras, with the
possibility of losing the target from their fields of view. A
smooth reaction may not be sufficient to quickly adapt to the

target motion variations and the target may be lost by the flying
cameras.

The proportional, integral and derivative values are com-
bined to set a candidate PID controlled velocity

vc,i(k) = Ri(k)vi(k��k)+(s̃P,i(k) + s̃I,i(k) + s̃D,i(k))�k,
(10)

where vi(k � �k) is the velocity of the ith camera. Note
that the velocity is computed with the PID controller locally
(on each flying camera) and it needs to be further set via
consensus in order to maintain the formation geometry. The
following distributed fusion step is important as it helps the
flying cameras to drive towards the same direction.

Similarly to Eq. 6 the consensus on the candidate velocity
is computed as

ṽc,i(k) =

JbX

j=1

1

card(Di)

X

n2Di

ṽj
c,n(k) (11)

where Jb is the total number of iterations, ṽ0
c,n(k) = vc,n(k)

where n indexes one of the neighbors and ṽc,i(k) is the agreed
velocity of the ith flying camera that is used in the next step
to maintain the formation geometry.

V. FORMATION CONSTRAINED POSITIONING

In order to maintain the formation, it is important that each
flying camera knows its own desired direction, which it can
be given as prior at initialization [33], or it can be inferred
step by step via distributed fusion as we proposed in Sec. IV.
The algorithm proposed in [33] was formulated for cases with
two neighbors per agent (flying cameras in our case). The

consensus algorithms

coordinated motion control

buffer

!#(%) !̃+ % + !̃- % + !̃. % 	
0#(%)

01#(%) 23,#(%)

sensing

Fig. 1. Block diagram of the proposed control model. The position of the target on the sensor plane is used to determine the steering response, si(k).
Robots communicate to agree on a corrected steering response, s̃i(k), which is stabilized with a PID controller. Proportional, integral and derivative terms
are indicated with s̃P (k), s̃I(k) and s̃D(k), respectively. The steering response proposes a velocity for each robot, which a consensus algorithm corrects
(ṽi(k)). Geometric constraints maintain the formation using the relative position of neighboring robots to compute the next goal position, xg,i(k), that
each robot uses to determine its own dynamics.

follows a goal (desired) trajectory point xg,i(k) ∈ R3, and
a goal direction of the first body direction b1g,i(k) [17] (the
subscript g stands for goal).

Target detection errors and target localization noise may
introduce estimation errors. We therefore model target de-
tection errors and target localization noise. Let p(xt,i(k)) be
the probability for the sensor of robot i to detect the target
at time k. We model target detection as a time-independent
Bernoulli distribution

p(xt,i(k)) =

{
1− pd if target detected
pd otherwise,

(1)

where pd is the miss-detection probability. An example of
miss-detection probability of a state-of-the-art pedestrian
detector [20] is pd ∼ 0.23.

Moreover, let ψi : R3 7→ R2 be the transformation that
projects the target center of mass from the 3D world to the
2D sensor plane of robot i. We model target localization as

xt,i(k) =

{
ψi(xt(k)) + ωi(k) if target detected
null otherwise,

(2)

where ωi(k) = N (0, σω) is the Gaussian noise that models
the target detection noise, and null indicates no decision. The
value of σω models the noise on the position of the detection.
A typical value of this noise, when the target is a pedestrian,
is ∼10% of the size of the bounding box enclosing the target.

IV. INDIVIDUAL STEERING RESPONSE

The objective of each robot is to maintain the target
centered in its sensor plane. The steering direction and
the steering gain depend on the target dynamics and its
(detected) location on the image plane.

Let si(k) be the steering response defined as

si(k) =

[
sx,i
sy,i

]
= sm,i(k) ◦ sgn(sd,i(k)), (3)

where sm,i(k) = [smx,i(k), smy,i(k)]T is the steering gain,
sd,i(k) = [sdx,i(k), sdy,i(k)]T is the steering direction and ◦

is the Hadamard product. If sdx,i(k) > 0, sgn(sdx,i(k)) =
1; if sdx,i(k) < 0, sgn(sdx,i(k)) = −1; if sdx,i(k) = 0,
sgn(sdx,i(k)) = 0. The steering response of a robot when it
does not detect the target (null in Eq. 2) is zero.

The altitude can be measured with an onboard barometer
[8], [21], but for simplicity we consider that the robots move
on a (virtual) plane at a non-zero altitude. We therefore do
not consider in this work variations in altitude, i.e. sdz,i(k) =
0. Fluctuations due to altitude measurement errors [8], [22]
can be addressed by measuring size changes of the detected
target on the sensor plane.

We compute the steering direction terms by projecting
xt,i(k) onto the two axes on the sensor plane. Because the
sensor orientation can differ from that of the body frame of
the robot, the two axes have to be rotated accordingly via
Rc,i. The axes are defined as ex,i = ψi(Ri(0)Rc,ie1) and
ey,i = ψi(Ri(0)Rc,ie2). The origin of the axes is the center
of the sensor plane. The steering direction components are
computed as

sd,i(k) = [ex,i, ey,i]
Txt,i(k). (4)

The steering gain terms are designed such that the steering
response becomes more vigorous as the distance between
xt,i(k) and the center of the sensor plane increases. These
terms are calculated via a function M : R2 7→ R2, where
sd,i(k) 7→ M(sd,i(k)) = sm,i(k) maps xt,i(k) into the
steering gain terms of sm,i(k). No steering is performed
when the target detection is in the center of the sensor plane.
Therefore M is zero (minimum) when xt,i(k) coincides with
the center of the sensor plane. We choose M to be a Gaussian
function to produce a quicker steering response than a linear
mapping when the target moves farther away from the center.
M is regulated via the variance σ2

m ∈ R of the Gaussian as

sm,i(k) = 1− exp

(
−1

2
xd,i(k)T

[
σ2
m 0
0 σ2

m

]−1

xd,i(k)

)
.

(5)

The farther the target from the center of the sensor plane
(with respect to both axes), the larger the terms of sm,i(k).

Due to detection noise and different perspectives, the
steering response inferred by a robot via the target detection
on the sensor plane may be different from that of other
robots. Moreover, if the target changes its motion, some
robots might be unable to react timely and to adapt their
motion to keep the target in their sensing range. The solutions
to these problems will be presented in the next section.

V. COLLABORATIVE REACTIVE STEERING

A. Coordinated motion control

Robots iteratively receive from and send to neighbors the
steering response, s̃li(k), where l is the iteration index and
s̃0
i (k) = si(k), the steering response that acts on the first and

second body directions, namely b1,i(k) and b2,i(k) (Eq. 3).
The goal is to maintain over time a certain distance between
robot i and robot j, di,j(k), i.e. di,j(k) ≈ di,j(0) ∀ k.

Let s̃i(k) be the steering response achieved via consensus1

as

s̃i(k) =

Ja∑

l=1

1

|Di|
∑

n∈Di

Ri(k)−1Rn(k)s̃ln(k), (6)

where Ja is the total number of iterations, |.| is the cardinality
of a set and Di is the set of neighbors of robot i that
have detected the target. The index n refers to a neighbor
robot. We assume that robots share information without
communication delays.

To achieve drive, tracking and fast response towards the
desired steering response, unlike [12] we translate the steer-
ing response s̃i(k) inferred from the sensor plane into inertial
controls for each robot using an integral and derivative (PID)
controller [23]. The goal of our PID controller is to take
the value of s̃i(k) (Eq. 6) to zero in order to achieve the
objective of centering the target on each robot’s sensor plane
despite changes in target acceleration or vigorous turns. The
proportional value of the PID acts directly on s̃i(k):

s̃P,i(k) = KP s̃i(k), (7)

where KP is the proportional gain. The integral value is
obtained by accumulating the steering response over time as

s̃I,i(k) = KI

0∑

τ=−τI
s̃i(k + τ∆k), (8)

where KI is the integral gain, τI is the time interval for the
integration (typically between the initialization of the system
and the current time instant [24]) and ∆k is the sampling
time. The integration within the interval [0, k] is unsuitable as
it leads to a high rigidity of robot maneuvers. The reactivity
of the robots increases by decreasing the integration interval.
However, τI cannot be zero because this would lead to
unstable maneuvers due to sharp responses of the controller
to sudden motion variations of the tracked target. Finally, the

1We chose the mean operator as it can fuse data for a 3-robot neigh-
borhood. The median operator can be used when neighborhoods of at least
four robots are available.

derivative value is obtained by differentiating the steering
response into two distinct time instants as

s̃D,i(k) =
KD

τD
(s̃i(k)− s̃i(k − τD∆k)) , (9)

where KD is the derivative gain and τD defines the time
interval to compute the differentiation. The larger τD, the
more robust the steering response to target speed variations
or to noisy measurements. The smaller τD, the quicker the
reaction of a robot to target speed variations. A sensitive
reaction to speed variations may cause oscillations due to
sudden accelerations of the robots, with the possibility of
losing the target from their fields of view; whereas a smooth
reaction may not be sufficient to quickly adapt to the target
motion variations and the target may be lost by the robots.

The proportional, integral and derivative values are com-
bined to set a candidate PID controlled velocity as

vc,i(k) = ṽi(k −∆k) + (s̃P,i(k) + s̃I,i(k) + s̃D,i(k)) ∆k,
(10)

where ṽi(k −∆k) is the agreed velocity of the ith camera.
Note that the PID controller acts on the individual steering

response of each robot by enabling control stability via
temporal integration. However, this integration step could
magnify the marginal differences of the steering response
computed in Eq. 6 as the number of iterations Ja might
insufficient to make the steering response converge at the
same value for all the robots. In order to ensure that
the robots converge to the same velocity, we perform an
additional consensus phase.

The ṽc,i(k) for robot i is the agreed velocity that is used
in the next step to maintain the formation geometry:

ṽc,i(k) =

Jb∑

l=1

1

|Di|
∑

n∈Di

Ri(k)−1Rn(k)ṽlc,n(k), (11)

where Jb is the total number of consensus iterations and
ṽ0
c,n(k) = vc,n(k).

Our relative-positioning system relies on the local (body)
reference system of each robot, not on a global coordi-
nate system [25]. Unpredictable dynamics of the robots
due to various factors, such as robots’ inertia, noisy target
detections and external disturbance (e.g. wind) can cause
position variations. The two consensus phases used so far
to agree on velocity do not include geometric knowledge
that is necessary to maintain the shape of the formation. The
inclusion of this knowledge will be discussed next.

B. Geometric constraints

We introduce geometric constraints to maintain, despite
disturbances, the robots within their position in the for-
mation. Each robot measures its relative distance from its
neighbors and corrects its own velocity if the distance
exceeds a certain tolerance.

We extend the idea proposed in [26] to cases when robots
can sense the relative position of more than two neighbors
and use non-hierarchical formation control to increase, com-
pared to a leader-follower control scheme [26], robustness

to speed variations of individual robots and to external
disturbances (e.g. noisy target detections).

Given the relative and goal positions of neighbors with
respect to the body reference of robot i and the candidate
velocity ṽc,i(k), the inertia of the robot is computed via
the desired trajectory point xg,i(k) to maintain itself in the
formation. In the case of a quadrotor as robot, the inertial
dynamics are determined by four identical propellers, which
are equidistant from the center of the body and generate a
thrust and torque normal to the body plane defined by b1,i(k)
and b2,i(k) [17].

Given a goal trajectory point xg,i(k), the total thrust
applied to a robot and the desired direction of the third-
body axis b3g,i(k) are selected to stabilize the translational
dynamics2. In our case the robots’ relative heading directions
do not change during the flight and keep pointing to the
direction set at initialization [12], [27].

To achieve coordinated motion control we first compute a
candidate desired trajectory and then adjust it, if necessary,
based on the circle intersection rule [26]. The candidate
desired trajectory is calculated as

xc,g,i(k) = xi(k −∆k) +Ri(k)ṽc,i(k)∆k. (12)

To select xc,g,i(k) as the desired trajectory following the
constraints of the formation shape, we initially compute the
set of intersection points generated by all the neighbors of
robot i as

Θi(k) = {ρm : ρm ∈ Γ(x̂i,j(k), di,j(0)) ∩ Γ(x̂i,q(k), di,q(0)),

∀ j, q ∈ Di, j 6= q 6= i} , (13)

where Γ(x, d) defines the circle with center x and radius d,
m ∈ N; di,j(0) is the distance to be maintained between
robot i and j, which is defined at initialization (k = 0);
and x̂i,j(k) and x̂i,q(k) are computed by robot i using their
measured positions and shared goal positions at k − 1, and
the updated velocities received from robot j and q at k,
respectively, such that

x̂i,j(k) = xg,j(k −∆k) + ηi,j(k) +Rj(k)ṽc,j(k)∆k, (14)

where ηi,j(k) = N (0, σn) is an additive Gaussian noise on
the measurement about the relative positions between two
robots (i.e. [19]). σn models the localization error of the
neighboring robots introduced by the proximity sensor.

When non-empty, the set Θi(k), contains at least |Di|−2
intersection points (two neighbors). Only the intersection
points near the candidate xc,g,i(k) are considered. From the
solution of Eq. 13, the points in Θi(k) can be divided into
two sets: distant and near points from xc,g,i(k). We sort
the near points in Θi(k) in ascending order based on their
distance from xc,g,i(k) and we build a set Θ′i(k) containing
the first |Di|−2

2 of the sorted points in Θi(k).
To confirm xc,g,i(k) as the desired trajectory that follows

the constraints of the formation shape, we compute the point

θc,i(k) =
1

|Θ′i(k)|
∑

m∈Θ′
i(k)

ρm. (15)

2For details on the control algorithm, please see [17].

The desired trajectory is then computed as

xg,i(k) =

{
xc,g,i(k) if Θ′i(k) /∈ ∅ ∧ εi,j > ε

θc,i(k) otherwise,
(16)

with εi,j = ||xc,g,i(k)−x̂i,j(k)||−di,j(0), ∀i, j ∈ Θ′i(k), i 6=
j, where ||.|| is the `-2 norm and ε is the separation tolerance
term. The larger ε, the more constrained the robots in
maintaining the inter-distances defined in D(0).

VI. VALIDATION

A. Simulation setup

We validate the proposed framework by analyzing the
behavior of camera-equipped aerial robots that follow a
moving target in a formation. We use the dynamics of a
quadrotor to model the inertia of the robots [17].

Let each robot be equipped with a camera with focal length
fL = 0.1 and angle of view φ = π

4 . The resolution of the
camera is W = H = 600 pixels. We evaluate the proposed
method with a formation of up to N = 12 robots [28]. We set
the altitude and the radius of the formation at A = 5m and
L = 6m, respectively, according to typical specifications of
commercial quadrotors with a camera. The starting positions
of the robots are

xi(0) =

(
Lcos((i− 1)

π

N/2
), L sin((i− 1)

π

N/2
), A

)T
,

(17)
∀i ∈ C(k). This configuration leads to an inter-distance
among robots of about 3.1m, that is the working distance
of a realistic relative positioning system [18], [19].

Because the velocity of the target is unknown to the robots,
we set the initial velocity equal to vt(0) = [0, 0, 0]T ∀i, with
∆k = 0.04 sec for all the experiments. The matrix D(k) is
defined such that each robot i is only aware of its closest
neighbors and the distance di,j to be maintained depends on
the initial positions defined in Eq. 17. The following values
are used: ε = 0.1 (Eq. 16) and σm = W

3 (Eq. 5); this value
of σm allows the mapping function to be almost zero at the
borders of the image plane. We chose the PID configuration
with KP = 0.08, KI = 0.00022 and KD = 3 based on a
sensitivity analysis that we performed.

To analyze the reaction of the system to noisy and missed
target detections we vary the success probability of detecting
the target within the interval pd ∈ [0, 0.72] (Eq. 1) and
the additive Gaussian noise (Eq. 2) with standard deviation
σω = pωW within pω ∈ [0, 0.36]. We perform 20 runs for
each parameter and each target trajectory, and average the
results. Fig. 2 shows the 10 target trajectories, T1, ..., T10,
we employed for the evaluation that were chosen from a
randomly generated set using the code from [29]. Each
trajectory is characterized by different target dynamics with
variations in speed and direction. Speed variations range
from 1.04m/s to 9.20m/s, which are comparable to a per-
son walking and performing high intensity sport activities,
respectively [30]. The target is 1.75m tall.

x
50 100 150 200 250 300

y

0

50

100

150

200

start

end

v
min

= 1.35, v
max

= 6.58

x
100 150 200 250

y

0

50

100

150

200

250

300

start

end

v
min

= 1.33, v
max

= 9.17

x
0 50 100 150 200 250

y

0

50

100

150

200

250

300 start
end

v
min

= 1.04, v
max

= 8.93

x
0 100 200 300

y

0

50

100

150

200

start

end

v
min

= 1.32, v
max

= 5.71

x
0 100 200 300

y

50

100

150

200

250

start

end

v
min

= 1.49, v
max

= 8.87

x
150 200 250 300 350 400

y

50

100

150

200

250

300

350

400

start

end

v
min

= 1.22, v
max

= 6.38

x
100 200 300 400 500

y

0

100

200

300

400

500

start

end

v
min

= 1.06, v
max

= 6.01

x
0 100 200 300 400

y

50

100

150

200

250

300

350

400

start

end

v
min

= 2.23, v
max

= 7.69

x
300 350 400 450

y

0

100

200

300

400

500
start

end

v
min

= 1.11, v
max

= 6.24

x
100 200 300 400 500

y

0

50

100

150

200

250

300

350

start

end

v
min

= 1.31, v
max

= 9.2

T1 T2 T3 T4 T5

T6 T7 T8 T9 T10

Fig. 2. The trajectory set. Speed variations are in dark blue for minimum velocity, vmin, and in dark red for maximum velocity, vmax. T1: high velocity
before a slow curve; T2: steady acceleration that reaches a high velocity and a severe U-turn; T3: start position at high velocity; T4: alternated high and
slow velocity; T5 high initial velocity and large loop; T6 alternated high and slow velocity plus U-turn with velocity variations; T7: zig-zag start with
acceleration just before a curve; T8: curve at a high velocity; T9: initial high velocity plus severe zig-zag; T10: acceleration after the curve.

TABLE I
TARGET INCLUSION PERFORMANCE (MEAN AND STANDARD DEVIATION) BY VARYING DETECTION NOISE, MISSED DETECTION PROBABILITY AND

ROBOT RELATIVE LOCALIZATION NOISE IN THE CASE OF THE 12-ROBOT FORMATION.

No noise Detection noise (pω) Missed detection (pd) Localisation noise (σn)
.06 .20 .28 .36 .24 .48 .72 .005 .010 .015 .021

T1 .66 ± .36 .67 ± .34 .54 ± .38 .13 ± .13 .01 ± .08 .66 ± .35 .65 ± .35 .40 ± .26 .58 ± .23 .36 ± .13 .14 ± .08 .05 ± .08
T2 .33 ± .33 .16 ± .15 .00 ± .06 .00 ± .06 .01 ± .06 .32 ± .31 .07 ± .12 .00 ± .06 .32 ± .25 .07 ± .07 .02 ± .06 .01 ± .06
T3 .36 ± .37 .31 ± .32 .09 ± .12 .02 ± .06 .01 ± .06 .36 ± .38 .31 ± .32 .05 ± .07 .29 ± .26 .13 ± .11 .04 ± .06 .01 ± .06
T4 .63 ± .37 .64 ± .37 .58 ± .36 .32 ± .29 .14 ± .11 .63 ± .37 .61 ± .36 .64 ± .34 .54 ± .28 .38 ± .15 .12 ± .08 .04 ± .08
T5 .44 ± .38 .37 ± .36 .07 ± .09 .01 ± .06 .01 ± .06 .45 ± .39 .37 ± .34 .01 ± .07 .35 ± .27 .19 ± .14 .04 ± .06 .02 ± .06
T6 .69 ± .36 .68 ± .36 .22 ± .21 .10 ± .10 .14 ± .14 .68 ± .36 .63 ± .36 .10 ± .12 .57 ± .26 .38 ± .15 .12 ± .08 .04 ± .07
T7 .65 ± .34 .67 ± .33 .56 ± .32 .16 ± .12 .02 ± .07 .63 ± .35 .63 ± .35 .60 ± .32 .57 ± .23 .35 ± .12 .13 ± .09 .04 ± .07
T8 .66 ± .36 .67 ± .36 .62 ± .37 .07 ± .08 .02 ± .07 .67 ± .35 .63 ± .35 .62 ± .35 .60 ± .25 .33 ± .14 .14 ± .08 .02 ± .07
T9 .59 ± .40 .54 ± .38 .44 ± .34 .13 ± .13 .03 ± .07 .60 ± .39 .51 ± .39 .46 ± .34 .50 ± .27 .20 ± .11 .07 ± .07 .03 ± .07
T10 .71 ± .37 .69 ± .37 .55 ± .37 .11 ± .16 .01 ± .07 .71 ± .37 .67 ± .37 .28 ± .31 .61 ± .27 .36 ± .15 .12 ± .08 .03 ± .07

B. Discussion

We quantify the performance in terms of average target
inclusion, namely the percentage of the target included in the
central area of the image plane, defined as a circle centered
in [0, 0]T with radius W

3 , where W is the width of the
image plane. When the target is centered in the image plane
the target inclusion is equal to one. A failure occurs when
the formation drifts from the target and the robots cannot
generate steering responses to follow it. We evaluate the
attitude of the formation by changing the parameters of the
proposed vision-based controller, the two-phase distributed
consensus and the use of multiple neighbors to achieve
improved robustness in maintaining the formation shape.

Tab. I shows the target inclusion averaged over time and
across the performance of robots in the formation under
detection noise and miss-detections. The target inclusion
performance does not reach 1 in the case of "No noise"
because the target’s motion variations are interpreted with
a delay by robots when the target accelerates or deceler-
ates. T2 is the most challenging trajectory because of its
initial vigorous target acceleration. Detection noise is what
affects the performance the most. With some trajectories

the formation can maintain track of the target, even when
the standard deviation is a fifth of the image plane size
(pω = 0.2). The formation is robust also when the target is
miss-detected with pd = 0.72 (independently) on the image
plane of each robot. This robustness is possible thanks to
the redundancy introduced by multiple robots monitoring the
target and because the consensus can effectively propagate
the steering commands within the formation.

Relative localization noise affects the robots when they
estimate the position of their neighbors. We model the
relative localization noise within the interval σn ∈ [0, 0.021]
to analyze the performance up to system failure, using data
collected with real devices [18] (summarized in [19]). In
Tab. I we can observe that the robots can maintain the
formation up to σn = 0.01, on average. The maximum
localization error is about 3cm (on a distance of 3.1m), which
agrees with the specifications of the relative positioning
system in [18]. T2 is the only trajectory where the maximum
localization error allowed before failure is about 2.1cm.
When the formation fails to track the target because of
large noise in localization, the error εi,j is larger than the
separation tolerance term. Therefore, each desired trajectory

target

target trajectory

flying camera trajectories
target

direction

target

target trajectory

flying camera trajectories
target

direction

(a) (b)

target
direction

steering
direction

target
direction

steering
direction

(c) (d)

Fig. 3. Steering directions for the first 2500 time steps of (a,c) T1 and (b,d) T2 from (a,b) a 3D point of view and (c,d) top view. Note that the colored
steering directions are generated before the distributed consensus step (si(k)) and the color of the target trajectory represents target acceleration and
deceleration only (and not the steering direction as for the robots).

0 3 5 7 10
number of iterations (Ja)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

ta
rg

et
 in

cl
us

io
n

 0.01
 ± 0.01

 0.45
 ± 0.12

 0.62
 ± 0.14

 0.60
 ± 0.14

 0.67
 ± 0.16

0 3 5 7 10
number of iterations (Jb)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

ta
rg

et
 in

cl
us

io
n

 0.01
 ± 0.02

 0.56
 ± 0.19

 0.67
 ± 0.16

 0.69
 ± 0.13

 0.69
 ± 0.13

(a) (b)

Fig. 4. Target inclusion performance (mean and standard deviation) for the
distributed consensus steps in (a) Eq. 6 and (b) Eq. 11 obtained on T1 under
noisy conditions (pω = 0.06, pd = 0.2, σn = 0) and with communication
failures during consensus (pf = 0.2). (a) Variations of Ja with Jb = 20.
(b) Variations of Jb with Ja = 5.

computed for the successive time step (Eq. 16) follows the
candidate desired trajectory (Eq. 12), which does not account
for the geometric constraints of the formation, but only the
velocity agreed via distributed consensus.

Fig. 3 shows the steering directions of the first 2500 time
steps of T1 and T2. A steering agreement is visible when the
robots move together (visualized with the same color). The
robots steering directions are generated before the distributed
consensus step (si(k)). In Fig. 3a,c robots can follow the
target despite steering disagreement. A steering disagreement
may in fact emerge near to curves in the target trajectory,
but it can be corrected using the distributed consensus. In
Fig. 3b,d the robots drift from the target after the first part
of the trajectory, but thanks to the external robots that can
still view the target, the formation returns on target. During
the returning phase (at about x = 120, y = 150) there is
an oscillation and then the formation gets back on target.
When the robots are back on target (at about x = 140, y =
240) the steering direction is opposite to the target motion

direction as the target decelerates. Along this deceleration
segment (green part) there is another disagreement about
the steering direction. The robots generate steering responses
with different directions due to the different target positions
on their image plane.

Next, we analyze the method with and without the dis-
tributed consensus on T1 to show the number of iterations
used to achieve stable steering commands under noisy de-
tections (pω = 0.06, pd = 0.2, σn = 0) and communication
failures during consensus iterations. We simulate communi-
cation failures using the probability of failing, pf , to send
the steering data to the neighbor robot. We set pf = 0.2.
Fig. 4a shows that, without using distributed consensus, the
formation is lost and that five consensus iterations of the
steering response term led to steady performance. Fig. 4b
shows that the contribution of the consensus on the velocity
term in achieving successful tracking.

Tab. II shows the temporal average of the inclusion per-
formance using a single robot, and formations composed of
three, six and twelve robots on T1 and T2 with (pω = 0.05
pd = 0.1 σn = 0.005) and without (pω = pd = σn = 0)
noise. We can observe that the target inclusion improves

TABLE II
TARGET INCLUSION PERFORMANCE (MEAN AND STANDARD DEVIATION)
WITH A SINGLE ROBOT AND WITH FORMATIONS COMPOSED OF THREE,

SIX AND TWELVE ROBOTS UNDER DIFFERENT NOISE CONDITIONS.

1 3 6 12

pω = pd = σn = 0
T1 .03 ± .16 .58 ± .41 .69 ± .38 .70 ± .37
T2 .01 ± .09 .02 ± .09 .01 ± .06 .46 ± .42

pω = .05 pd = .1 T1 .02 ± .11 .14 ± .09 .42 ± .17 .58 ± .25
σn = .005 T2 .01 ± .10 .03 ± .07 .04 ± .06 .24 ± .19

TABLE III
PERFORMANCE COMPARISON (MEAN AND STANDARD DEVIATION) BETWEEN [12] AND THE PROPOSED APPROACH (PRO) WITH pω = pd = σn = 0.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
[12] .08 ± .22 .01 ± .08 .01 ± .06 .03 ± .14 .03 ± .12 .06 ± .20 .02 ± .11 .08 ± .20 .05 ± .18 .06 ± .16
Pro .70 ± .38 .41 ± .42 .30 ± .38 .61 ± .39 .47 ± .43 .68 ± .38 .60 ± .38 .62 ± .39 .60 ± .42 .72 ± .38

as the number of robots increases. In T2 a single robot
and formations with three and six robots are unable to
follow the target. By analysing the qualitative results we
observed that the single robot fails a few time steps after the
initialization because when the target goes out of the field
view the steering responses cannot be generated sufficiently
quick and accurately to maintain track of the target. The
redundancy introduced with a three-robot formation allows
us to cope with targets going outside the field of view of
one or two robots as it is still possible to generate steering
responses, communicate them to the other robots and drive
the formation back on target. A higher redundancy, e.g., with
six and twelve robots makes it possible to achieve even better
target inclusion performance.

Tab. III shows the results of the comparison between [12]
and the proposed approach. Results show that the more
realistic challenges introduced with the new trajectories make
[12] fail in all cases. The small values of target inclusion in
[12] are generated because the initialisation is performed on
target. With the proposed approach, after a few time steps the
robots can adapt their velocity and follow the target, whereas
[12] fails to adapt. Also, note that the proposed approach,
as opposed to [12], does not use a prior velocity and starts
with speed zero. There are two main reasons for the superior
performance of the proposed approach. Firstly, the PID
controller allows the robots to rapidly correct their velocity
when the target performs motion variations. Secondly, the
distributed consensus stages allow the robots that see the
target to achieve an agreement on the steering commands
and to communicate this information to the others.

C. Execution times

The value of the steering response shared among robots
is a double (8bytes). The communication channel is uni-
cast between each pair of robots using IEEE 802.11a with
throughput up to 54Mbps. We assume that the communica-
tion is TCP, so for each data packet transmitted (DATA), the
receiver replies with an acknowledgement (ACK) [31]. The
time to transmit a packet encapsulating a double value is

TDATA = Tpreamble + Theader +

⌈
30.75 + L

BpS(m)

⌉
Tsymbol

= 16µs+ 4µs+

⌈
30.75 + 8

27

⌉
4µs = 28µs, (18)

where Tpreamble is the preamble duration, Theader is the
header duration, Tsymbol is the symbol interval, L is the
payload in bytes and BpS(m) = m/2 is the number of
bytes in a symbol at m Mbps. The time to receive the ACK

TABLE IV
EXECUTION TIMES FOR THE MAJOR STEPS.

Steps Time (ms)
Consensus algorithm (2.04× 2) 4.08
PID controller 0.01
Formation maintenance 0.41
Robot dynamics 0.01
Interval between two frames (25Hz) 40.00
Interval for robot perception & response 35.49

is

TACK = Tpreamble + Theader +

⌈
16.75

BpS(m)

⌉
Tsymbol

= 16µs+ 4µs+

⌈
16.75

27

⌉
4µs = 24µs. (19)

When a packet is sent, the robot needs to wait 16µs (SIFS)
to receive the ACK. To send another packet the robot needs
to wait 34µs (DIFS), in order to avoid chances of collisions.
The time the consensus takes to perform 5 iterations and
communicate with 2 neighbors is

4× 5× (TDATA + 16µs+ TACK + 34µs) = 2.04ms,
(20)

where 4 considers the transmission and reception of one
packet to and from each neighbor.

The cost for formation maintenance can be estimated
similarly to the consensus algorithm above, but with one
iteration only:

4× (TDATA + 16µs+ TACK + 34µs) = 0.41ms. (21)

Finally, we consider 0.01ms for PID and robot dynamics
as the PID can be computed instantly and the transmission of
commands to the motors (robot dynamics) can be performed
at 250Hz [32].

Table IV summarizes the time required for each step
of the proposed framework. A 25Hz camera allows for
40ms to process the data, make decisions and actuate the
robot dynamics. Based on the above analysis, an object
detector (e.g. [33]) running onboard faster than 35ms would
therefore allow the proposed framework to operate in real
time. Current state-of-the-art pedestrian detectors working
in unconstrained scenarios can run at 37ms per frame [34]
and therefore we are expecting to be able to soon run the
proposed framework in real time using a standard 25Hz
camera.

VII. CONCLUSION

We presented a closed-loop distributed control model that
enables a formation of aerial robots to follow a moving target
without relying on an external positioning system. The target
is detected independently on each robot’s sensor plane and

the target position is mapped into steering controls. To ac-
count for noisy detections, the inferred steering controls are
corrected via distributed consensus to achieve an agreement
on the maneuvers to accomplish. A PID controller helps each
robot within the formation to achieve flight stability. The
formation is maintained over time via geometric constraints
based on the relative position of neighbors. The formation
can handle noisy and missed target detections occurring
for each robot independently, and is also robust to relative
localization errors.

We are working towards the development of the phys-
ical collaborative robot network that embodies the model
described in this paper. To this end, we will also address
the problems caused by communication delays and the on-
the-fly correction of the PID parameters to adapt to the target
dynamics.

REFERENCES

[1] M. Schwager, B. Julian, M. Angermann, and D. Rus, “Eyes in the sky:
Decentralized control for the deployment of robotic camera networks,”
Proceedings of IEEE, vol. 99, no. 9, pp. 1541–1561, Sep. 2011.

[2] L. Doitsidis, S. Weiss, A. Renzaglia, M. Achtelik, E. Kosmatopoulos,
R. Siegwart, and D. Scaramuzza, “Optimal surveillance coverage for
teams of micro aerial vehicles in GPS-denied environments using
onboard vision,” Autonomous Robots, vol. 33, no. 1-2, pp. 173–188,
Aug. 2012.

[3] A. Adaldo, S. Mansouri, C. Kanellakis, D. Dimarogonas, K. Johans-
son, and G. Nikolakopoulos, “Cooperative coverage for surveillance
of 3d structures,” in Proc. of IROS, Vancouver, CA, Sep. 2017.

[4] A. Macwan, J. Vilela, G. Nejat, and B. Benhabib, “A multirobot
path-planning strategy for autonomous wilderness search and rescue,”
Trans. on Cybernetics, vol. 45, no. 9, pp. 1784–1797, Sep. 2015.

[5] M. Liu, K. Sivakumar, S. Omidshafiei, C. Amato, and J. How,
“Learning for multi-robot cooperation in partially observable stochas-
tic environments with macro-actions,” in Proc. of IROS, Vancouver,
CA, Sep. 2017.

[6] M. Saska, T. Baca, V. Spurny, G. Loianno, J. Thomas, T. Krajnik,
P. Stepan, and V. Kumar, “Vision-based high-speed autonomous land-
ing and cooperative objects grasping - towards the mbzirc competi-
tion,” in Workshop on Vision-based High Speed Autonomous Naviga-
tion of UAVs (IROS), Daejeon, KO, Oct. 2016.

[7] A. Khan, B. Rinner, and A. Cavallaro, “Cooperative robots to observe
moving targets: Review,” IEEE Trans. on Cybernetics, vol. 48, no. 1,
pp. 187–198, Jan. 2018.

[8] T. Nageli, C. Conte, A. Domahidi, M. Morari, and O. Hilliges,
“Environment-independent formation flight for micro aerial vehicles,”
in Proc. of IROS, Chicago, IL, USA, Sep. 2014, pp. 1141–1146.

[9] M. Saska, T. Baca, J. Thomas, J. Chudoba, L. Preucil, T. Krajnik,
J. Faigl, G. Loianno, and V. Kumar, “System for deployment of groups
of unmanned micro aerial vehicles in GPS-denied environments using
onboard visual relative localization,” Autonomous Robots, pp. 1–26,
Apr. DOI: 10.1007/s10514-016-9567-z, 2016.

[10] S. Shen, Y. Mulgaonkar, N. Michael, and V. Kumar, “Multi-sensor
fusion for robust autonomous flight in indoor and outdoor environ-
ments with a rotorcraft MAV,” in Proc. of ICRA, Hong Kong, CN,
May 2014, pp. 4974–4981.

[11] C. Teulire, E. Marchand, and L. Eck, “3-d model-based tracking for
uav indoor localization,” IEEE Trans. on Cybernetics, vol. 45, no. 5,
pp. 869–879, May 2015.

[12] F. Poiesi and A. Cavallaro, “Distributed vision-based flying cameras
to film a moving target,” in Proc. of IROS, Hamburg, DE, Sep. 2015,
pp. 2453–2459.

[13] F. Morbidi and G. Mariottini, “On active target tracking and cooper-
ative localization for multiple aerial vehicles,” in Proc. of IROS, San
Francisco, CA, USA, Sep. 2011, pp. 2229–2234.

[14] B. Fidan, V. Gazi, , S. Zhai, N. Cen, and E. Karatas, “Single-view
distance-estimation-based formation control of robotic swarms,” IEEE
Trans. on Industrial Electronics, vol. 60, no. 12, pp. 5781–5791, Dec.
2013.

[15] M. Aranda, G. Lopez-Nicolas, C. Sagues, and M. Zavlanos, “Three-
dimensional multirobot formation control for target enclosing,” in
Proc. of IROS, Chicago, IL, USA, Sep. 2014, pp. 357–362.

[16] S. H. Semnani and O. Basir, “Semi-flocking algorithm for motion
control of mobile sensors in large-scale surveillance systems,” Trans.
on Cybernetics, vol. 45, no. 1, pp. 129–137, Jan. 2015.

[17] T. Lee, M. Leok, and N. McClamroch, “Geometric tracking control
of a quadrotor UAV on SE(3),” in Proc. of ICRA, Atlanta, GA, USA,
Dec. 2010, pp. 5420–5425.

[18] F. Rivard, J. Bisson, F. Michaud, and D. Letourneau, “Ultrasonic rela-
tive positioning for multi-robot systems,” in Proc. of ICRA, Pasadena,
CA, USA, May 2008, pp. 323–328.

[19] J. Roberts, T. Stirling, J.-C. Zufferey, and D. Floreano, “3-D relative
positioning sensor for indoor flying robots,” Autonomous Robots,
vol. 33, no. 1-2, pp. 5–20, Aug. 2012.

[20] R. Benenson, M. Omran, J. Hosang, and B. Schiele, “Ten years
of pedestrian detection, what have we learned?” in Proc. of ECCV,
Zurich, CH, Sep. 2014, pp. 613–627.

[21] X. Zhang, B. Xian, B. Zhao, and Y. Zhang, “Autonomous flight control
of a nano quadrotor helicopter in a GPS-denied environment using on-
board vision,” IEEE Trans. on Industrial Electronics, vol. 62, no. 10,
pp. 6392–6403, Sep. 2015.

[22] M. Tanveer, S. Ahmed, D. Hazry, F. Warsi, and M. Joyo, “Stabilized
controller design for attitude and altitude controlling of quad-rotor
under disturbance and noisy conditions,” American Journal of Applied
Sciences, vol. 10, no. 8, pp. 819–831, 2013.

[23] K. Ang, G. Chong, and Y. Li, “PID control system analysis, design,
and technology,” IEEE Trans. on Control Systems Technology, vol. 13,
no. 4, pp. 559–576, Jul. 2005.

[24] I. Sa and P. Corke, “System identification, estimation and control for
a cost effective open-source quadcopter,” in Proc. of ICRA, Saint Paul,
MN, USA, May 2012, pp. 2202–2209.

[25] M. Bartels and H. Werner, “Cooperative and consensus-based ap-
proaches to formation control of autonomous vehicles,” in Proc. of
International Federation of Automatic Control, Cape Town, South
Africa, Aug. 2014, pp. 8079–8084.

[26] B. Anderson, B. Fidan, C. Yu, and D. Walle, “UAV formation control:
Theory and application,” in Recent Advances in Learning and Control.
Springer, 2008, vol. 371, pp. 15–33.

[27] M. Saska, J. Vakula, and L. Preucil, “Swarms of micro aerial vehicles
stabilized under a visual relative localization,” in Proc. of ICRA, Hong
Kong, CN, May 2014, pp. 3570–3575.

[28] G. Vasarhelyi, C. Viragh, G. Somorjai, N. Tarcai, T. Szorenyi, T. Ne-
pusz, and T. Vicsek, “Outdoor flocking and formation flight with
autonomous aerial robots,” in Proc. of IROS, Chicago, USA, Sep.
2014, pp. 3866–3873.

[29] S. Oh, S. Russel, and S. Sastry, “Markov Chain Monte Carlo data
association for multi-target tracking,” IEEE Trans. on Automatic
Control, vol. 54, no. 3, pp. 481–497, Mar. 2009.

[30] A. Ferro, J. Villacieros, P. Floria, and J. Graupera, “Analysis of speed
performance in soccer by a playing position and a sports level using a
laser system,” Journal of Human Kinetics, vol. 44, pp. 143–153, Dec.
2014.

[31] Y. Kim, S. Choi, K. Jang, and H. Hwang, “Throughput enhancement
of IEEE 802.11 WLAN via frame aggregation,” in Proc. of Vehicular
Technology Conference, Los Angeles, CA, USA, Sep. 2004, pp. 3030
–3034.

[32] J. Witt, B. Annighofer, O. Falkenberg, and U. Weltin, “Design of
a high performance quad-rotor robot based on a layered real-time
system architecture,” in Proc. of Intelligent Robotics and Applications,
Aachen, GE, Dec. 2011, pp. 312–323.

[33] D. Ribeiro, A. Mateus, J. Nascimento, and P. Miraldo, “A real-time
pedestrian detector using deep learning for human-aware navigation,”
arXiv:1607.04441 [cs.RO], Jul. 2016.

[34] F. D. Smedt, D. Hulens, and T. Goedeme, “On-board real-time tracking
of pedestrians on a uav,” in Proc. of CVPR Workshops, Boston, MA,
USA, Jun. 2015.

	Introduction
	Problem definition
	Perception modelling
	Individual steering response
	Collaborative reactive steering
	Coordinated motion control
	Geometric constraints

	Validation
	Simulation setup
	Discussion
	Execution times

	Conclusion
	References

