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ABSTRACT
Wearable cameras, which are becoming common mobile sensing
platforms to capture the environment surrounding a person, can
also be used to infer activities of the wearer. In this paper we crit-
ically discuss features for ego-centric activity recognition using
videos. �ese features can be learned from data or designed to ef-
fectively encode motion magnitude, direction and other dynamics.
Features can be derived from optical �ow, from the displacement of
key-points or the intensity centroid. We also discuss how features
are e�ectively �ltered and fused for speci�c tasks. Features pre-
sented in this paper can also be applied to other wearable systems
that use accelerometer and gyroscope data.
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1 INTRODUCTION
Sensing the surrounding environment with a small, high-quality
and e�cient wearable camera, also known as egocentric or �rst-
person vision (FPV) [26], has been made possible by fast progress
in embedded technology [16]. FPV can support lifelogging [15, 21],
augmented reality [6, 33], and activity recording [19, 51]. More-
over, egocentric activity recognition has multiple applications that
include health monitoring [53, 54] and sport activities analysis and
segmentation [4, 27].

Surveys on wearable camera systems [8, 10, 24, 26, 35, 60] are
generally wide in scope and include multiple application domains,
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i.e. object, action and activity recognition [8, 10, 35] as well as lifel-
ogging and video summarization [24, 60]. Kanade and Hebert [26]
addressed the challenges in developing environment-aware wear-
able camera systems for the localization and recognition of object,
people and 3D scene structure. However, no low-level features to
encode activities were covered. Bambach [8] reviewed algorithms
for lifelogging video summarisation and the recognition of object-
driven activities such as cooking. Betancourt et al. [10] covered
tasks such as physical scene reconstruction and interaction detec-
tion without discussing in details key low-level features. Nguyen et
al. [35] hierarchically structured activities of daily living as motion-
level events (e.g. hand detection), basic actions (e.g. closing a jar)
and complex activities (e.g. making a cup of co�ee) but the speci�c
features employed for the classi�cation were not described. Zhou
and Gurrin [60] and Jacquemard et al. [24] focused, respectively,
on the evaluation of devices and ethical challenges in lifelogging.
�e use of di�erent wearable sensors for activity detection and
classi�cation was also recently reviewed [11, 13].

However, no survey has yet focused on details of features for the
classi�cation of user’s activities using wearable camera systems.
In this paper, we review four main categories of motion features
(see Table 1) in FPV for recognition of the wearer’s activity. �e
majority of features are still handcra�ed and designed to encode
salient characteristics of the motion data (Fig. 1). Apparent motion
can be estimated using optical �ow, virtual-inertial data or the dis-
placement of keypoints. We also describe the extraction of features
automatically learned from data using deep neural networks. Deep
architectures learn high-level representations of the input data that
help generalize across di�erent classi�cation challenges.

�is paper is organized as follows. Section 2 describes features
extracted form optical �ow data. Section 3 presents keypoint-based
features where motion is estimated from the temporal displacement
of keypoints. Recent trends to extract virtual-inertial features from
video are described in Section 4. Section 5 reviews automatic learn-
ing of motion features from data. Finally, Section 6 concludes the
review and outlines future directions.

2 OPTICAL FLOW-BASED FEATURES
Optical �ow is the main source of motion features for video-based
activity recognition [4, 37, 38, 54]. Optical �ow can be derived
using direct motion estimation technique [23] to achieve sub-pixel
accuracy. A grid representation of the optical �ow is o�en pre-
ferred to a dense representation in order to avoid redundancy in
the assumption of global motion dominance in FPV [4, 37, 54, 58].

We can group optical �ow-based features into three categories:
raw grid, direction and/or magnitude histogram and frequency-
domain features. Raw grid features include grid representation and
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Table 1: Common feature extraction and motion �ltering techniques used in the state-of-the-art. Optical-�ow is most fre-
quently used due to its sub-pixel accuracy and direct motion estimation technique. RANSAC: random sample consensus.

[3] [1] [4] [43] [38] [37] [54] [53] [56] [27] [58] [34] [55] [59]

Features

Optical �ow-based

Raw grid feature 3 3 3 3 3 3

Grid direction histogram 3 3 3 3

Grid magnitude histogram 3 3 3

Grid gradient histogram 3

Grid frequency feature 3 3 3

Keypoint-based Direction histogram 3 3

Virtual-inertial-based Intensity centroid 3 3

Average grid 3

Learned Pooled deep-appearance feature 3 3

Deep motion feature 3 3

Filtering

�resholding 3 3 3

RANSAC-based �ltering 3 3 3 3

Gaussian smoothing 3 3 3 3

Average pooling 3 3 3 3

Early fusion 3 3 3 3 3 3 3

the concatenation of horizontal and vertical grid components [53–
56]. Poleg et al. [37] used the radial projection response of grid
optical �ow vectors to discriminate moving from stationary camera
wearers. Similarly, hard-coded rules on grid vector direction (θ )
are employed in [34] to classify activities, e.g. Le�-turn satis�es
0◦ < θ < 90◦ or 270◦ < θ < 360◦. Raw grid features have limited
discriminative capabilities as speci�c motion characteristics (e.g.
magnitude) are not exploited to the required level to achieve a
robust motion feature with a compact representation.

Direction (see Fig. 1 (b)) and magnitude (see Fig. 1 (c)) histograms
of the �ow vector can provide more discriminant features [4, 27].
Motion magnitude and direction components are generally ex-
ploited separately to increase the discrimination. For example,
Sit-down and Stand-up can be distinguished by exploiting their
direction pa�erns, whereas magnitude information helps di�eren-
tiate Walk and Sprint. A histogram is a compact representation
of the direction and/or magnitude components of the grid �ow
data [4, 27, 43]. �e histogram might be applied using indepen-
dent direction and magnitude bins [4], joint spatial and direction
bins [43], or joint magnitude, direction and magnitude variance
bins [27]. �e inclusion of spatial bins [43] is comparatively less ef-
fective since multiple motion-driven activities can be performed in
similar environment se�ings. In addition, Ryoo et al. [43] employed
motion boundary histogram (MBH) as one of the multiple motion
features from optical �ow data that compensates the camera motion.
MBH is obtained by applying a spatial derivative on the horizon-
tal and vertical optical �ow components separately, followed by a
magnitude-weighted histogram of motion direction [52].

Frequency-domain features exploits low-level motion dynamics,
which helps distinguish activities with similar direction pa�erns,
e.g. Sprint and Run (see Fig. 1 (c)) as the la�er involves less fre-
quent changes in motion dynamics [4]. Kitani et al. [27] extracted
frequency-domain features from the horizontal and vertical grid
components independently, whereas the features were extracted
on the direction and magnitude equivalents of the grid components
in [1, 4]. �e frequency-domain features can be represented by
grouping the Fourier responses into equally spaced bands [4] or by

selecting the low-frequency coe�cients [1, 27]. �ough the low fre-
quency coe�cients are robust to noise, the representation does not
include the full spectrum characteristics. Similarly to the number
of magnitude and direction bins for the histogram representations,
the number of frequency bands needs to be carefully selected in
order to avoid under or over-quantization.

Filtering is commonly applied to discard falsely matched descrip-
tors [4, 54, 56, 58, 59]. Common �ltering techniques include thresh-
olding [37, 58, 59], random sample consensus (RANSAC) [17, 27, 55,
58, 59], Gaussian smoothing [4, 37] and temporal averaging [53–56].
In thresholding, motion vectors whose magnitude is smaller than a
threshold are removed [37, 58, 59]. RANSAC can be employed to
discard outliers of optical �ow vectors [27, 55] or matched descrip-
tors [58, 59]. Gaussian smoothing can also be applied on the whole
motion data when there is a high variance [4, 37]. Average pooling
of temporally adjacent grid vectors can also improve recognition
performance [53–56].

�ough optical �ow might pose relatively higher computational
cost, it provides sub-pixel accuracy and plausible approaches, e.g.
Horn-Schunck [22] could be applied in-cases of less/no texture
regions. Besides, sparse optical �ow computation can ease compu-
tation as global motion o�en dominates local ones due to full- or
upper-boy motion of the wearer. �ough di�erent discriminative
characteristics could be extracted from optical �ow, e.g. from its di-
rection, magnitude, and dynamics; multiple existing methods tend
to focus on encoding only a speci�c subset of these characteristics.
Generally, optical �ow is a commonly used motion information but
all available discriminative details need to be e�ectively encoded
for activity recognition in FPV.

3 KEYPOINT-BASED FEATURES
Spatial change of keypoints across frames can also be used to de-
duce apparent motion. According to the type of spatial structure of
the interest points, keypoint detection can be blob-based or corner-
based. Examples of blob-based detectors include scale-invariant
feature transform [30], speeded-up robust features [9] and cen-
tre surround extremas [5]. Examples of corner-based detectors
include features from accelerated segment test [41], adaptive and
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(a) Key frames

(b) Direction histogram
3

(c) Magnitude histogram

(d) Direction spectrogram

Figure 1: Examples of features derived from the optical �ow to encode di�erent motion characteristics of Walk, Run and
Sprint. (a) Key frames of the activity in the corresponding column; (b) direction histogram representations; (c), (d) the activities
can be easily discriminated using the magnitude histogram and the frequency-domain analysis of the direction information,
respectively.

generic corner detection based on the accelerated segment test [32]
and binary robust invariant scalable keypoints [29]. A�er a key-
point is detected, its neighbourhood is described using a binary
or non-binary descriptor with characteristics such as invariant to
rotation [18, 44, 49]. Using a binary descriptor makes matching
computationally easier since Euclidean distance can be replaced by
a Hamming distance that can be calculated using a bitwise XOR
operation [7, 29, 42].

Zhang et al. [59] proposed a keypoint-based feature, inspired by
the earlier work of Shi and Tomasi [46]. �e matched keypoints
were further re�ned by uniqueness (one-to-one correspondence)
and epipolar constraints [20]. �e frame motion was estimated as a
set of displacement vectors between matched descriptor pairs. �e
direction of each displacement vector that satis�ed a magnitude
threshold was quantized using a histogram representation. �e
work was later upgraded to achieve multi-resolution detection
of interest points in [58]. Average standard deviation [59] and

combined standard deviation [58] of the histogram representation
were used in order to include temporal characteristics in the feature
space, which resulted in enhanced classi�cation accuracy. Since
Zhang et al. [58, 59] did not exploit the magnitude information
and encode the dynamics in-detail, their recognition performances
are o�en inferior to more advanced features that exploit those
characteristics [4, 27].

Generally, keypoint-based methods are computationally e�cient
and can handle large displacements. Particularly, binary descrip-
tors o�er faster matching of keypoints, which is useful in resource-
limited platforms such as wearable systems. However, their useful-
ness is reduced in poorly textured �rst-person videos, which are
o�en blurred due to high egomotion induced by the camera wearer.
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(a) (b) (c)

Figure 2: A step-by-step visualization of virtual-inertial data extraction from an exemplar Walk video segment (≈ 4s) with
640 × 480 resolution at 30f ps. (a) �e intensity centroid tracked across frames; (b), (c) the velocity and acceleration vectors
extracted using consecutive temporal derivatives, respectively.

4 VIRTUAL-INERTIAL FEATURES
In addition to optical �ow and keypoint displacement, features can
also be derived from the apparent motion encoded as virtual-inertial
data, which contain velocity and acceleration vectors generated
from the video (see Fig. 2). Virtual-inertial features provide inertial
characteristics without using the actual inertial sensors, and thus
avoid synchronization issues. �e inertial data can be encoded
from the movement of intensity centroid (see Fig. 2 (a)). �e inten-
sity centroid of an image, which is equivalent to the mass-centre
of a rigid object in physics, is derived from the �rst-order image
moments, which are computed as weighted averages of the whole
intensity values [12, 40, 42]. �e �rst-order derivative on the in-
tensity centroids of successive frames gives instantaneous velocity
abstraction (see Fig. 2 (b)). Corresponding acceleration vectors are
generated by applying another temporal derivative on the velocity
vectors (see Fig. 2 (c)). �e velocity and acceleration vectors along
with their magnitude components provide the complete set of the
virtual-inertial data. Virtual-inertial features are extracted from
the these velocity and acceleration components similarly to the ex-
traction of the state-of-the-art inertial features from accelerometer
data [4].

�e inertial features can be extracted in time and frequency
domains. �e common time-domain inertial features include zero-
crossing, minimum, maximum, median, energy, kurtosis, mean and
standard deviation [4, 28, 36, 39, 54]. Zero-crossing measures the
oscillatory behaviour of a vector in reference to zero magnitude
value. Note that zero-crossing is not applied on magnitude vectors;
however, the same intuition can be extracted in a reference to a non-
zero threshold value. Kurtosis quanti�es whether the distribution
of an inertial vector is heavy-tailed or light-tailed with respect to a
Gaussian distribution. A high kurtosis represents a heavy tail in the
distribution, which signals a high probability of outliers [4]. Due
to its high order de�nition, kurtosis is sensitive to noise. However,
its ensemble along with other features improves the discriminating
potential [4, 54]. Virtual inertial features can also be extracted
from the mean optical �ow vectors such that the horizontal and
vertical components across frames constitute additional time-series
vectors [1].

5 LEARNED FEATURES
Motion features can be learned from optical �ow [31, 38, 48, 57] or
pooled from deep appearance descriptors [1, 3, 31, 43] exploiting
deep neural networks that automate feature engineering using
successive layers of the neural networks.

Convolutional neural networks (CNNs) have been successful
in learning high-level appearance features [25, 45]. �e temporal
pooling of frame-level appearance features re�ect the variation of
appearance information. Ryoo et al. [43] proposed di�erent pooling
operations, which treat each descriptor across frames as time-series
data.

Summation and maximum pooling on the raw appearance fea-
tures are less e�ective to encode the temporal variations as they
do not show how a feature element changes over time. For this
purpose, a time-series gradient pooling was proposed to encode the
short and long temporal variations by applying �rst-order temporal
derivative on each descriptor element [43].

�e summation and histograms of positive and negative gradi-
ents can be applied to encode the variation. Comparatively, the
gradient histogram representation describes the short-term vari-
ation more e�ectively since its score depends only on the sign of
the gradients. �e discriminative capacity of the feature space can
be improved by encoding a more detailed temporal characteristics
using frequency-domain analysis. �is technique could also be
applied to simple appearance descriptors such as the histogram
of oriented gradients [43]. In addition to the temporal variation
of the appearance, static appearance information can be useful
when activities are correlated with certain environmental se�ings,
e.g. Go-upstairs/downstairs involves staircases [43, 52].

Poleg et al. [38] proposed a compact CNN taking a sparse grid
volume as input and learned motion features that are demonstrated
to outperform the handcra�ed features in their previous work [37].
�e network was derived from the temporal component of an ex-
isting network [47], and it was designed with a 3D convolutional
layer followed by a 3D pooling to handle the 3D input data [50].
A 2D convolution layer applied a�erwards eliminates the tempo-
ral dependency early in the network. Finally, two fully connected
convolutional layers are stacked followed by the so�max layer.
�ough the deep motion features are shown to be transferable
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Table 2: Summary of advantages and disadvantages of main feature groups employed in the state of the art.

Feature groups Advantages Disadvantages

Optical �ow-based Direct motion estimation Computationally expensive w.r.t keypoint-based methods
Sub-pixel accuracy

Keypoint-based Easier than optical �ow-based Challenging when there is no texture
Can encode both appearance and motion

Virtual-inertial Provides inertial features without using the actual
sensor

Less discriminative when a user is stationary

Learned
Avoids feature engineering Requires more data for training
Improved performance with enough data Computational expensive than all other methods
Transferable knowledge Features are less interpretable

across datasets of similar nature [38], the interpretation of the
knowledge learned at di�erent layers requires further study.

Abebe et al. [3] employed spectrogram-based representation of
short-term motion feature in FPV that is later normalized into RGB-
like images. �is approach helps to exploit existing CNN frame-
works that are pretrained on natural images, e.g. ImageNet [14],
for motion features encoding, i.e. transfer learning. �e spec-
trogram representation allows simpler networks to learn motion
features using 2D convolutions compared to 3D convolution-based
approaches [50]. �is approach has been validated further in other
mobile and wearable sensory data such as inertial time-series from
accelerometer and gyroscope [2]. �e spectrogram of multiple
axial motion components were stacked as an image to achieve
cross-domain knowledge transfer using vision-based deep neural
networks.

Generally, though deep learning is posed to become the standard
in feature encoding, deep neural networks are o�en treated as
black-boxes, and the interpretation of learned motion features is
still limited. Deep learning o�ers transferability of knowledge
across di�erent tasks [2] but it still requires further research to
signi�cantly outperform handcra�ing approaches in FPV.

6 CONCLUSION
We reviewed features for activity recognition in videos captured
by wearable cameras. �e features are designed to exploit available
motion peculiarities, such as magnitude, direction and dynamics.
Optical �ow-based techniques are in general more robust as they
can estimate motion in the presence of weak texture and motion
blur. Table 2 summarises the FPV features discussed in this paper.

Activity recognition o�en requires the use of multiple discrim-
inative features [4, 27, 37, 58, 59] or an additional modality, such
as inertial sensors, to complement visual features [34, 53, 54]. In
these cases, early feature fusion can be performed prior to clas-
si�cation [4, 27, 37, 43, 55]. Feature-level fusion has to be care-
fully applied on multiple feature groups with equivalent scales
and dimensions, otherwise the discriminative potential of a lower-
dimensional feature group or a feature group with smaller scale
could be undermined as the result of the feature-level fusion which
is o�en implemented using concatenations.

With the growing size of publicly available datasets and the suc-
cess of deep networks across di�erent application domains, high-
level learned features are expected to outperform hand-cra�ed fea-
tures robustly. While learned features pose to overtake handcra�ed
features, common strategies on the architecture of the network and
the integration of appearance and motion information still requires

further study. Knowledge transfer o�ers a promising potential to
the future development of unsupervised or weakly supervised tasks
as labelling the growing size of FPV data becomes di�cult.
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