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ABSTRACT

Images shared on social media are routinely analysed by classifiers
for content annotation and user profiling. These automatic infer-
ences reveal to the service provider sensitive information that a naive
user might want to keep private. To address this problem, we present
a method designed to distort the image data so as to hinder the in-
ference of a classifier without affecting the utility for social media
users. The proposed approach is based on the Fast Gradient Sign
Method (FGSM) and limits the likelihood that automatic inference
can expose the true class of a distorted image. Experimental results
on a scene classification task show that the proposed method, pri-
vate FGSM, achieves a desirable trade-off between the drop in clas-
sification accuracy and the distortion on the private classes of the
Places365-Standard dataset using ResNet50. The classifier is misled
94.40% of the times in the top-5 classes with only a small average re-
duction of three image quality measures (SSIM, PSNR, BRISQUE).

Index Terms— Privacy; Adversarial Images; Fast Gradient Sign
Method; Image Quality.

1. INTRODUCTION

Routine large-scale inference on images shared on social media re-
veals information (image content) that contributes to create detailed
user profiles, which can then be used for targeted commercial or po-
litical advertising. As images may capture details that are sensitive
(private) for a user, a privacy violation may occur when a classifier
infers, without user consent, sensitive information from an image.
We therefore aim to protect the private content of images that a user
shares with other users from undesirable automatic inference.

Classifiers can infer from images the presence of people, their
age, gender, clothing style, their relationship as well as the scene
class depicted in the image [1]. Traditional methods for visual pri-
vacy protection distort the appearance of sensitive image regions
(e.g. faces) to make them unrecognisable using redactions [2], car-
tooning [3], pixelation [4], single or multiple blurs [5, 6], false
colours [7], scrambling [8] or warping [9]. Moreover, using deep
learning pipelines, face regions can be de-identified while preserving
their original facial expression [10].

The key properties of an ideal method for privacy protection
against the automatic inference of sensitive information are (i) to
maintain the fidelity (utility) of images so that people cannot notice
the distortion; (ii) to conceal the distortion so that an algorithm can-
not detect it; and (iii) to prevent the deduction of a mapping between
the true class and the class assigned by the classifier to the distorted
image. In summary, the impact of the distortion on a protected image
should be unnoticeable, undetectable and irreversible.
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To this end, we exploit the knowledge that relatively small per-
turbations in an image [11] can mislead specific object detectors [12]
and image classifiers [11, 13, 14]. For example, if the true class is
known, the Fast Gradient Sign Method (FGSM) [15] generates dis-
torted images that are most likely to be classified as the nearest incor-
rect class [16]. To improve success in misleading the classifier [17],
FGSM can be re-applied iteratively until a desired misclassification
probability is reached [18]. Variations of FGSM produce distorted
images that are (mis)classified as the least likely class [18] or as a
randomly selected class (except the most likely one) [19]. However,
these adversarial methods have the following limitations for privacy
protection: FGSM and iterative FGSM require the availability of the
true class of an image [16], thus limiting their applicability as a user
would need to declare the true class for each image to be uploaded;
least-likely FGSM is reversible as the true class of the image can be
recovered with high probability; and random FGSM may select the
true class as the original image is classified correctly only about half
of the times, as we will see in this paper.

We address the above limitations with private FGSM, a privacy-
protection method that achieves diversity of the selected target class
and reduces the likelihood that the mapping between the original and
the target class can be deduced. We achieve diversity by picking the
target class from an adaptive subset of classes that most likely does
not include the class to be protected. This subset is defined based
on the inference probabilities of the classifier on the image to be
protected. We validate private FGSM on the task of preserving the
privacy of a scene, such as a place of cult or a hospital, and evaluate
the irreversibility and quality of the adversarial image generated for
the ResNet50 classifier on the Places365-Standard dataset [20].

2. PRIVATE FAST GRADIENT SIGN METHOD

Let x be an image and ŷi be the true class label of the scene type
depicted in x. The label ŷi belongs to a set of D scene classes,
{ŷ1, ..., ŷi, ..., ŷD}. Applying a multi-class classifier M to x gener-
ates the D-dimensional one-hot vector y:

y = M(x), (1)

where y = (y1, ..., yi, ..., yD) results from a decision on the D-
dimensional vector p = (p1, ..., pi, ..., pD), whose element pi is
the probability that x depicts the scene class yi:

pi = p(yi|x). (2)

We aim to define a transformation T such that ẋ = T (x) in-
duces M to classify the image with a different scene label:

y 6= M(ẋ). (3)

The distortion applied to the image x by T should be minimal
(‖ẋ − x‖ → 0) so that the transformation is unnoticeable. More-
over, T should be irreversible so that the true class, ŷi, cannot be



deduced from the predicted class M(ẋ) or from the distribution of
the probabilities of the predicted classes. Let us define T as follows:

ẋ = T (x) = x + δ∗x, (4)

where δ∗x is adversarial noise that can be generated as:

δ∗x = arg max
δx

JM (θ,x + δx,y), (5)

where JM is the cost function used in training to estimate the pa-
rameters θ of classifier M . Eq. 5 maximises the error for the origi-
nally predicted class and has no closed-form solution if JM is non-
convex [18]. When JM is the cross-entropy function and the parame-
ters of the classifier are known, FGSM can generate adversarial noise
to induce the classifier to select a specific class label (e.g. targeted
least-likely FGSM [18], targeted random FGSM [19]) or to increase
the misclassification probability (e.g. non-targeted FGSM [15], non-
targeted iterative FGSM [18]).

FGSM [15] solves Eq. 5 by linearising JM around θ using the
true class ŷi represented by the one-hot vector ŷ:

ẋ = x + ε sign(∇xJM (θ,x, ŷ)), (6)

where ε controls the magnitude of the perturbation and∇xJM is the
gradient of the cost function JM with respect to x. FGSM requires
only one inference and one backpropagation of M and therefore is
fast, but does not guarantee the misclassification of the image [17].

Iterative FGSM [18] extends FGSM by generating adversarial
noise iteratively until a desired (mis)classification probability or a
maximum number of iterations is reached. The final ẋ = ẋN is
obtained as

ẋN = ẋN−1 + ε sign(∇xJM (θ, ẋN−1, ŷ)), (7)

from the initialisation ẋ0 = x. For example, our experiments
reached convergence with fewer than 20 iterations, on average.

FGSM and iterative FGSM need to know the true class [18],
which may be unavailable or impractical to generate in real-world
applications. To address this limitation, least-likely FGSM [18]
forces the transformation T to target the least-likely class. If y is the
least-likely D-dimensional one-hot vector, whose elements are

yi =

{
1 i = arg minj=1...D p(yj |x)

0 otherwise,
(8)

least-likely FGSM generates ẋ = ẋN iteratively, from the initialisa-
tion ẋ0 = x, as

ẋN = ẋN−1 − ε sign(∇xJM (θ, ẋN−1,y)), (9)

by increasing the probability of predicting y until a desired classi-
fication probability or a maximum number of iterations is reached.
However, selecting always as target class the least-likely one can be
exploited to deduce the true class, thus compromising irreversibility.

To overcome this problem, random FGSM [19] modifies least-
likely FGSM by selecting randomly the target class, y̌, from the set
of all possible classes except the most-likely class. However, as the
top-1 accuracy of classifiers may be low (see Table 1) random FGSM
may select the true class as the target class.

To achieve irreversibility with a high misclassification rate, we
propose private FGSM, a targeted and iterative FGSM, which gen-
erates adversarial images by adaptively targeting a class, ỹ, selected
as a function of the classification probability vector p. We obtain a
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Fig. 1. Comparison of the target class selection strategies for
least-likely FGSM, random FGSM and private FGSM. Least-likely
FGSM selects always the least-likely class. Random FGSM chooses
from the set of all classes but the most-likely one (e.g. 364 classes in
the Places365-Standard dataset). Private FGSM chooses from a set
whose number of classes is determined by a minimum cumulative
probability defined by σ (see Eq. 10).

high misclassification rate by leveraging the fact that the true class
is often among the classes with the highest cumulative probabilities.

Let p′ = (p′1, ..., p
′
D) contain the elements of p sorted in de-

scending order. Private FGSM selects ỹ randomly from the subset
of classes whose cumulative probability exceeds a threshold σ ∈
[0, 1]:

ỹ = R

({
yj :

j−1∑
i=1

p′i > σ

})
, (10)

where R is a function that picks randomly one class label from the
input set and σ controls the number of classes to pick ỹ from: the
larger σ, the smaller the subset of target classes (see Fig. 1). The
protected image ẋ = ẋN is generated iteratively, starting from ẋ0 =
x, as

ẋN = ẋN−1 − ε sign(∇xJM (θ, ẋN−1, ỹ)), (11)

by increasing the probability of predicting ỹ until a desired classifi-
cation probability or a maximum number of iterations is reached.

Unlike least-likely FGSM [18], private FGSM increases diver-
sity to favour irreversibility as the target class is randomly selected
among the subset of classes that most likely does not contain the
class to be protected. As example of mapping from the true class to
the target class in the Places365-Standard dataset [20], least-likely
FGSM maps the class aqueduct to operating room 38% of the times
and iterative FGSM maps the class bus interior to train interior 38%
of the times, thus making these methods less suitable for privacy
protection. Instead, the highest frequency of a class consistently
mapped to a target class is 8% with random FGSM and 6% with
private FGSM.

Fig. 2 shows two examples of transformed images with private
FGSM and their selected classes ỹ.

3. VALIDATION

3.1. Experimental setup

We compare the proposed method, private FGSM (P-FGSM), with
FGSM [15], iterative FGSM (N-FGSM) [18], least-likely FGSM (L-
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class: church class: zen-garden
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class: waiting room class: kennel
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Fig. 2. Examples of two images (left column) transformed into their
protected versions (right column) with the proposed private FGSM
(P-FGSM).

FGSM) [18], random FGSM (R-FGSM) [19] and with a set of base-
line adversarial methods: a generic sign of Gaussian (SoG), with
zero mean and unit standard deviation, multiplied by ε, added for 1
or 8 iterations; the FGSM noise (see Eq. 6), added for 6 iterations;
and the R-FGSM noise, added for 1 or 3 iterations. The number of
iterations is selected to obtain a classification accuracy comparable
to that of the other methods, when possible. Images are clipped at
each iteration. For SoG, R-FGSM, L-FGSM and P-FGSM, we select
ε = 0.007, which is associated with the smallest pixel variation in an
8-bit image; the desired classification probability threshold is 0.99;
and the maximum number of iterations is 50 to limit the amount of
adversarial noise introduced. For P-FGSM, we select σ = 0.99 as
trade-off, on the training dataset, between privacy protection (mis-
classification) and irreversibility.

3.2. Dataset and classifier

We use as scene privacy dataset a subset of the validation set of
the Places365-Standard dataset [20] defined1 in the Mediaeval 2018

1The subset of sensitive classes includes scenes that may require, for var-
ious reasons, privacy protection, such as army-base, bathroom, bedchamber,
bedroom, church (indoor and outdoor), hospital and hospital-room, nursing-
home, pharmacy, sauna, shower, swimming pool (indoor and outdoor),
jacuzzi (indoor), temple (Asia); as well as scenes that would disclose private
personal information, such as airplane-cabin, airport-terminal, amusement-
park, aqueduct, bank-vault, bar, beach, beach-house, beer-garden, beer-hall,
berth, bullring, bus-interior, bus-station/indoor, campsite, car-interior, cas-
tle, catacomb, chalet, childs-room, classroom, closet, coast, discotheque,
dorm-room, drugstore, gymnasium (indoor), home-office, kindergarten-
classroom, locker-room, mosque (outdoor), playground, playroom, pub (in-

Pixel Privacy Challenge [21]. The Places365-Standard dataset has
over 1.8 million images of 365 scene classes, divided into train-
ing, validation and testing sets. The training and testing datasets of
the Challenge contain each 3,000 images that are part of 60 private
classes, with 50 images per class. While the testing images include
the 60 private scene classes only, the target class can be selected as
any of the scene classes of the Places365 dataset.

We use ResNet50 as multi-class classifier that was selected by
the Mediaeval 2018 Pixel Privacy Challenge [21]. We apply a bilin-
ear interpolation to downsize the original images to 224 × 224 pix-
els instead of using the re-sized images of the Places365-Standard
dataset (256 × 256 pixels, cropped to 224 × 224 pixels). Our so-
lution is preferable for both classification performance and image
quality.

3.3. Evaluation measures

To evaluate the extent to which a transformation T can protect the
privacy of the content of an image while maintaining its utility, we
consider the classification (in)accuracy, the irreversibility, and the
visual quality of the transformed image.

The classification accuracy quantifies the ability of a trans-
formed (protected) image to mislead the classifier. We evaluate at
which rank the transformed image is correctly classified by M . The
lower the accuracy in top ranks, the better the protection.

An irreversible transformation should have no bias towards a
particular target class for a given true class, hence the distribution of
the target class should ideally be indistinguishable from a uniform
distribution. We quantify irreversibility with the Euclidean distance
between the discrete uniform distribution and the average discrete
distribution of the target class of all the classes under consideration.
The smaller the distance, the higher the irreversibility.

To quantify the extent to which the protection is unnoticeable we
use three quality measures, namely the Structural SIMilarity (SSIM)
index [22], the Peak-Signal-to-Noise Ratio (PSNR), and the Blind
Referenceless Image Spatial Quality Evaluator (BRISQUE) [23].
SSIM is a full-reference measure that quantifies the structure preser-
vation in image windows: the higher the SSIM, the better the
image quality. The Peak-Signal-to-Noise Ratio (PSNR) is another
full-reference measure that quantifies the pixel-by-pixel difference
between two images: the higher the PSNR, the better the image
quality. Finally, BRISQUE is a no-reference measure that quantifies
distortions and unnaturalness in an image: the lower BRISQUE, the
better the image quality.

3.4. Discussion

Table 1 shows the top-1 and top-5 classification accuracy with
ResNet50, and SSIM, PSNR and BRISQUE as mean and standard
deviation for all the images. FGSM, N-FGSM and the baseline
methods either do not mislead the classifier (e.g. high accuracy of
N-FGSM) or considerably drop in visual quality (e.g. R-FGSM
with 3 iterations). The images transformed by P-FGSM, N-FGSM,
L-FGSM and R-FGSM have comparable visual quality.

R-FGSM obtains a low classification accuracy with 0.17% and
7.00% for top-1 and top-5 accuracy, respectively. P-FGSM and L-
FGSM achieve the lowest top-1 accuracy by always misleading the
classifier, whereas L-FGSM obtains the lowest top-5 accuracy. How-
ever, L-FGSM is less irreversible than N-FGSM, R-FGSM and P-
FGSM.

door), sandbox, schoolhouse, ski-resort, ski-slope, slum, swimming-hole,
train-interior, train-station/platform, tree-house, and waiting-room.



Table 1. Classification accuracy on the private images of the testing
subset of Places365-Standard [21] and visual quality scores (with
standard deviation). Classifier: ResNet50. KEY – T1: top-1 ac-
curacy (%); T5: top-5 accuracy (%); Orig.: Original image bilin-
early downsampled to 224×224; (XI): noise added for X iterations;
SoG: Sign of Gaussian; FG: Fast Gradient Sign Method (FGSM);
SSIM: Structural Similarity Index; PSNR: Peak Signal to Noise Ra-
tio; BRISQUE [23]; ↓: the lower, the better; ↑: the higher, the better.

Method T1 ↓ T5 ↓ SSIM ↑ PSNR ↑ BRISQUE ↓
Orig. 56.40 86.47 - - 26.71 (8.66)
SoG (1I) 56.43 86.53 .99 (.01) 42.16 (0.11) 24.90 (8.84)
SoG (8I) 1.36 5.03 .26 (.10) 12.85 (0.43) 46.63 (3.32)
FG 10.56 46.12 .99 (.01) 42.15 (0.13) 25.11 (8.42)
FG (6I) 7.93 17.20 .83 (.09) 27.65 (0.30) 41.32 (4.48)
R-FG (1I) 16.93 47.13 .99 (.01) 42.15 (0.12) 25.08 (8.43)
R-FG (3I) 0.37 5.87 .94 (.03) 34.23 (0.17) 33.40 (7.65)
N-FG 8.83 23.00 .98 (.02) 40.62 (4.75) 24.16 (8.31)
R-FG 0.17 7.00 .99 (.01) 40.24 (2.87) 23.99 (8.29)
L-FG (*) 0.00 0.17 .99 (.01) 38.08 (2.30) 23.67 (8.36)
P-FG 0.00 5.60 .99 (.01) 39.99 (2.72) 23.85 (8.28)
(*) considerably less irreversible than N-FG, R-FG and P-FG

Table 2. Euclidean distance between the uniform distribution and
the distribution of the target class selection with four methods. The
lower the distance, the higher the irreversibility.

Method Distance
N-FGSM 0.2298
R-FGSM 0.1414
L-FGSM 0.2805
P-FGSM 0.1416

Table 2 shows the Euclidean distance between a uniform distri-
bution and the distribution of the mapping to target classes. R-FGSM
and P-FGSM are the closest to a uniform distribution with a distance
of 0.1414 and 0.1416, respectively. When the distribution is closer
to a uniform distribution, the deduction of the true class of a trans-
formed image is more difficult.

Figure 3 shows how often each of the 365 classes is selected as
target class, regardless of the true class of each of the 3,000 images
of the Places365-Standard dataset. R-FGSM and P-FGSM have a
similar distribution, which is close to uniform and thus desirable. L-
FGSM has a significantly less uniform distribution and, for example,
the same target class is selected 6.77% of the times.

In summary, while P-FGSM and R-FGSM are comparable in
terms of irreversibility, P-FGSM has a higher misclassification rate
than R-FGSM, thus indicating better performance.

4. CONCLUSION

In this paper, we discussed how adversarial images can be exploited
for privacy protection against automatic inference and proposed
private FGSM, an algorithm for privacy protection. Images trans-
formed with private FGSM maintain a good visual quality and,
compared to images generated with other adversarial approaches,
have a higher degree of irreversibility. We showed that, in a scene
privacy-protection task, private FGSM always misleads a ResNet50
multi-class classifier in its top-1 result and 94.40% of the times in
its top-5 results.

As future work, we will evaluate the detectability of methods,

0
10

0
20

0
30

0
36

4
0

2

4

6

Target class index

Fr
eq

ue
nc

y
(%

)

0
10

0
20

0
30

0
36

4
0

1

2

Target class index

Fr
eq

ue
nc

y
(%

)

(a) (b)

0
10

0
20

0
30

0
36

4
0

1

2

Target class index

Fr
eq

ue
nc

y
(%

)

0
10

0
20

0
30

0
36

4
0

1

2

Target class index

Fr
eq

ue
nc

y
(%

)

(c) (d)

Fig. 3. Frequency of selection of each of the 365 classes of the test-
ing subset of Places365-Standard [21] generated by (a) L-FGSM, (b)
N-FGSM, (c) R-FGSM and (d) P-FGSM. The more uniform the dis-
tribution, the higher the irreversibility. Note the different scale of the
vertical axis in (a).

and validate the proposed approach on other datasets and with other
classifiers, as well as explore its applicability for privacy protection
in other classification tasks.

5. REFERENCES

[1] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva,
“Learning deep features for scene recognition using places
database,” in Advances in Neural Information Processing Sys-
tems (NIPS), Montreal, Canada, December 2014.

[2] A. Senior, S. Pankanti, A. Hampapur, L. Brown, Y.-L. Tian,
A. Ekin, J. Connell, C.F. Shu, and M. Lu, “Enabling video
privacy through computer vision,” in IEEE Security Privacy,
Oakland, California, USA, May 2005.

[3] Y. Chen, Y.-K. Lai, and Y.-J. Liu, “Cartoongan: Generative
adversarial networks for photo cartoonization,” in IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR),
Salt Lake City, Utah, USA, June 2018.

[4] K. Chinomi, N. Nitta, Y. Ito, and N. Babaguchi, “PriSurv: pri-
vacy protected video surveillance system using adaptive visual
abstraction,” in International Conference on MultiMedia Mod-
eling (MMM), Kyoto, Japan, January 2008.

[5] O. Sarwar, B. Rinner, and A. Cavallaro, “Design space explo-
ration for adaptive privacy protection in airborne images,” in
IEEE International Conference on Advanced Video and Signal
Based Surveillance (AVSS), Colorado Springs, CO, USA, Au-
gust 2016.

[6] O. Sarwar, A. Cavallaro, and B. Rinner, “Temporally smooth
privacy protected airborne videos,” in IEEE/RSJ International



Conference on Intelligent Robots and Systems (IROS), Madrid,
Spain, October 2018.
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