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Interaction between high-level and low-level image
analysis for semantic video object extraction

Andrea Cavallaro and Touradj Ebrahimi

Abstract— The task of extracting a semantic video object
is split into two sub-problems, namely object segmentation,
and region segmentation. Object segmentation relies on
a priori assumptions, whereas region segmentation is data-
driven, and can be solved in an automatic manner. These
two sub-problems are not mutually independent, and they
can benefit from interactions with each other. In this pa-
per a framework for such interaction is formulated. This
representation scheme based on region segmentation and se-
mantic segmentation is compatible with the view that image
analysis and scene understanding problems can be decom-
posed into low-level and high-level tasks. Low-level tasks
pertain to region oriented processing, whereas the high-level
tasks are closely related to object level processing. This ap-
proach emulates the human visual system: what one ’sees’
in a scene depends on the scene itself (region segmentation)
as well as on the cognitive task (semantic segmentation) at
hand. The higher level segmentation results in a partition
corresponding to semantic video objects. Semantic video
objects do not usually have invariant physical properties and
the definition depends on the application. Hence, the defini-
tion incorporates complex domain specific knowledge, and
is not easy to generalize. For the specific implementation
used in this paper, motion is used as a clue to semantic
information. In this framework, an automatic algorithm is
presented for computing the semantic partition based on
color change detection. The change detection strategy is
designed to be immune to the sensor noise and local illu-
mination variations. The lower level segmentation identifies
the partition corresponding to perceptually uniform regions.
These regions are derived by clustering in an N-dimensional
feature space, composed of static as well as dynamic image
attributes. We propose an interaction mechanism between
the semantic and the region partitions which allows to cope
with multiple simultaneous objects. Experimental results
show that the proposed method extracts semantic video ob-
jects with high spatial accuracy and temporal coherence.

Keywords: Image analysis, video object, segmentation, change

detection.

I. INTRODUCTION

One of the goals of image analysis is to extract mean-
ingful entities from visual data. A meaningful entity in an
image or an image sequence corresponds to an object in
the real world, such as a tree, a building, or a person. The
ability to manipulate such entities in a video as if they were
physical objects is a shift in the paradigm from pixel-based
to content-based management of visual information [1], [2],
[3]. In the old paradigm, a video sequence is characterized
by a set of frames. In the new paradigm, the video se-
quence is composed of a set of meaningful entities. A wide
variety of applications, ranging from video coding to video
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surveillance, and from virtual reality to video editing, ben-
efit from this shift.

The new paradigm allows us to increase the interaction
capability between the user and the visual data. In the
pixel based paradigm, only simple forms of interaction,
such as fast forward and reverse, slow motion, are possi-
ble. The entity oriented paradigm allows the interaction at
object level, by manipulating entities in a video as if they
were physical objects. For example, it becomes possible to
copy an object from one video into another.

The extraction of the meaningful entities is the core of
the new paradigm. In the following, we will refer to such
meaningful entities as semantic video objects. A semantic
video object is a collection of image pixels that corresponds
to the projection of a real object in successive image planes
of a video sequence. The meaning, i.e. the semantics, may
change according to the application. For example, in a
building surveillance application, semantic video objects
are people, whereas in a clothes shopping application, se-
mantic video objects are the clothes of the person. Even
this simple example shows that defining semantic video ob-
jects is a complex and sometimes delicate task.

The process of identifying and tracking the collections
of image pixels corresponding to meaningful entities is re-
ferred to as semantic video object extraction. The main
requirement of this extraction process is spatial accuracy,
that is, precise definition of the object boundary [4], [5].
The goal of the extraction process is to provide pixel-wise
accuracy. Another basic requirement for semantic video
object extraction is temporal coherence. Temporal coher-
ence can be seen as the property of maintaining the spatial
accuracy in time [6], [7]. This property allows us to adapt
the extraction to the temporal evolution of the projection
of the object in successive images.

The paper is organized as follows. In Sec. II, the need of
an effective visual data representation is discussed. Sec. III
describes how the semantic and region partition are com-
puted and introduces the intaraction mechanism between
low-level and high-level image analysis results. Experimen-
tal results are presented in Sec. IV, and in Sec. V we draw
the conclusions.

II. VISUAL DATA REPRESENTATION

Digital images are traditionally represented by a set of
unrelated pixels. Valuable information is often buried in
such unstructured data. To make better use of images and
image sequences, the visual information should be repre-
sented in a more structured form. This would facilitate op-
erations such as browsing, manipulation, interaction, and
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analysis on visual data. Although the conversion into struc-
tured form is possible by manual processing, the high cost
associated with this operation allows only a very small por-
tion of the large collections of image data to be processed
in this fashion. One intuitive solution to the problem of
visual information management is content-based represen-
tation. Content-based representations encapsulate the vi-
sually meaningful portions of the image data. Such a rep-
resentation is easier to understand and to manipulate both
by computers and by humans, than the traditional unstruc-
tured representation.

The visual data representation we use in this work mim-
ics the human visual system, and finds its origins in ac-
tive vision [8], [9], [11], [12]. The principle of active vision
states that humans do not just see a scene, but look at it.
Humans and primates do not scan a scene in raster fash-
ion. Our visual attention tends to jump from one point to
another. These jumps are called saccades. Yarbus [10]
demonstrated that the saccadic pattern depends on the
visual scene as well as on the cognitive task to be per-
formed. We focus our visual attention according to the
task at hand, and the scene content. In order to attempt
to emulate the human visual system to structure the visual
data, we decompose the problem of extracting video ob-
jects into two stages: content-dependent and application-
dependent. The content-dependent (or data-driven) stage
exploits the redundancy of the video signal by identifying
spatio-temporally homogeneous regions. The application-
dependent stage implements the semantic model of a spe-
cific cognitive task. This semantic model corresponds to a
specific human abstraction, which need not necessarily be
characterized by perceptual uniformity.

We implement this decomposition by modeling an image
or a video in terms of partitions. This partitional repre-
sentation results in spatio-temporal structures in the iconic
domain, as discussed in the next sections.

The application-dependent and the content-dependent
stages are represented by two different partitions of the
visual data, referred to as semantic and region partitions,
respectively. This representation in the iconic domain al-
lows us not only to organize the data in a more structured
fashion, but also to describe the visual content efficiently.

III. PROPOSED METHOD

To maximize the benefits of the object-oriented
paradigm described in Sec. I, the semantic video objects
need to be extracted in an automatic manner. To this
end, a clear characterization of semantic video objects is
required. Unfortunately, since semantic video objects are
human abstractions, a unique definition does not exist. In
addition, since semantic video objects cannot generally be
characterized by simple homogeneity criteria1 (e.g., uni-
form color or uniform motion), their extraction is a difficult
and sometimes loose task.

For the specific implementation used in this paper, mo-
tion is used as a clue to semantic information. In this

1This approach differs from many previous works that define objects
as areas with homogeneous features, such as color or motion.
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Fig. 1. The interaction between low-level (region partition) and high-
level (semantic partition) image analysis results is at the basis of the
proposed method for semantic video object extraction

framework, an automatic algorithm is presented for com-
puting the semantic partition based on color change detec-
tion. Two major noise components may be identified: the
sensor noise and illumination variations. The change detec-
tion strategy is designed to be immune to these two compo-
nents. The effect of sensor noise is mitigated by employing
a probability-based test that adapts the change detection
threshold locally. To handle local illumination variations, a
knowledge-based post-processing stage is added to regular-
ize the results of the classification. The idea proposed is to
exploit invariant color models to detect shadows. Then ho-
mogeneous regions are detected using a multi-feature clus-
tering approach. The feature space used here is composed
of spatial and temporal features. Spatial features are color
features from the perceptually uniform color space CIE
Lab, and a measure of local texturedness based on vari-
ance. The temporal features used here are the displacement
vectors from the dense optical flow computed via a differ-
ential technique. The selected clustering approach is based
on fuzzy-C-means, where a specific functional is minimized
based on local and global feature reliability. Local relia-
bility of both spatial and temporal features is estimated
using the local spatial gradient. The estimation is based
on the observation that the considered spatial features are
more uncertain near edges, whereas the considered tempo-
ral features are more uncertain on uniform areas. Global
reliability is estimated by considering the variance of the
features in the entire image compared to the variance of the
features in a region. The grouping of regions into objects
is driven by a semantic interpretation of the scene, which
depends on the specific application at hand. Region seg-
mentation is automatic, generic and application indepen-
dent. In addition, the results can be improved by exploiting
domain dependent information. Such use of domain depen-
dent information is implemented through interactions with
the semantic partition (Figure 1).

The details of the computation of the two partitions and
their interactions are given in the following.

A. SEMANTIC PARTITION

The semantic partition takes the cognitive task into ac-
count when modeling the video signal. The semantic (i.e.,
the meaning) is defined through a human abstraction. Con-
sequently, the definition of the semantic partition depends
on the task to be performed. The partition is then derived
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(a) (b)

Fig. 2. (a) Sample frame from the test sequence Hall Monitor and
(b) frame representing the background of the scene

through semantic segmentation. In general, human inter-
vention is needed to identify this partition, because the
definition of semantic objects depends on the application.
However, for the classes of applications where meaning-
ful objects are the moving objects, the semantic partition
can be automatically computed. This is possible through
color change detection. A change detection algorithm is
ideally expected to extract the precise contours of objects
moving in a video sequence (spatial accuracy). An accu-
rate extraction is especially desired for applications such
as video editing, where objects from one scene can be used
to construct other artificial scenes, or computational vi-
sual surveillance, where the objects are analyzed to derive
statistics about the scene.

The temporal changes identified by the color change de-
tection process are here used to compute the semantic
partition. However, temporal changes may be generated
not only by moving objects, but also by noise compo-
nents. The main sources of noise are illumination vari-
ations, camera noise, uncovered background and texture
similarity between objects and background. Since uncov-
ered background is originated by applying change detec-
tor on consecutive frames, a frame representing the back-
ground is used instead (Figure 2). Such a frame is either a
frame of the sequence without foreground objects or a re-
constructed frame if the former is not available [14]. Cam-
era noise and local illumination variations are then tackled
by a change detector organized in two stages. First, sen-
sor noise is eliminated in a classification stage. Then, local
illumination variations (i.e. shadows) are eliminated in a
post-processing stage.

A.1 Classification

The classification stage takes into account the noise
statistics in order to adapt the detection threshold to lo-
cal information. A method that models the noise statistics
based on a statistical decision rule is adopted. According to
a model proposed by Aach [16], it is possible to assess the
probability that the value at a given position in the image
difference is due to noise instead of other causes. This pro-
cedure is based on the hypothesis that the additive noise
affecting each image of the sequence respects a Gaussian
distribution. It is also assumed that there is no correla-
tion between the noise affecting successive frames of the

sequence. These hypotheses are sufficiently realistic and
extensively used in literature [17], [18], [19], [20]. The clas-
sification is performed according to a significance test, after
windowing the difference image. The dimension of the win-
dow can be chosen according to the application. In Figure 3
the influence of window size on the result of the classifica-
tioni by comparing the following sizes of the window: 3x3,
5x5, and 7x7. For the visualization of the results, a sample
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Fig. 3. Influence of the window size in the classification results. The
dimensions of the window used in the analysis are (a): 3x3, (b): 5x5,
(c): 7x7

frame from the test sequence Hall Monitor is considered.
The choice corresponding to Figure 3(b), a window of 25
pixels, is a good compromise between the presence of halo
artifacts, the correct detection of the object, and the ex-
tent of the window. This is the window size maximising the
spatial accuracy and is therefore used in our experiments.
The results of the probability-based classification with the
selected window size are compared in Figure 4 with state-
of-the-art classification methods so as to evaluate the dif-
ference in accuracy. The comparison is performed between
the probability-based classification, the technique based on
image ratioing presented in [21], and the edge-based clas-
sification presented in [22]. Among the three methods, the

(a) (b) (c)

Fig. 4. Comparative results of change detection for frame 67 of the
test sequence Hall Monitor: (a) probability-based classification, (b)
image ratioing, and (c) edge-based classification

probability-based classification (Figure 4(a)) provides the
most accurate results. A further discussion on the results
is presented in Section IV.

A.2 Post-processing

The post-processing stage is based on the evaluation of
heuristic rules which derive from the domain specific knowl-
edge of the problem. The physical knowledge about the
spectral and geometrical properties of shadows can be used
to define explicit criteria which are encoded in the form of
rules. A bottom-up analysis organized in three levels is
performed as described below.
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(a) (b)

Fig. 5. Comparison of results from the test sequence Hall Monitor.
The binary change detection mask is superimposed on the original
image. The results of the classification (a) is refined by the post-
processing (b) to eliminate the effects of shadows

1. Hypothesis generation. The presence of a shadow is first
hypothesized based on some initial evidence. A candidate
shadow region is assumed to correspond to a darker region
than the corresponding illuminated region (the same area
without the shadow). The color intensity of each pixel
is compared to the color intensity of the corresponding
pixel in the reference image. A pixel becomes a candidate
shadow pixel if all color components are smaller than the
corresponding pixel in the reference frame.
2. Accumulation of evidence. The hypothesized shadow re-
gion is then verified by checking its consistency with other
additional hypotheses. The presence of a shadow does
not alter the value of invariant color features. However,
a material change is highly likely to modify their value.
For this reason, the changes in the invariant color features
c1c2c3 [23] are analyzed to detect the presence of shad-
ows. A second additional evidence about the existence of a
shadow is derived from geometrical properties. This anal-
ysis is based on the position of the hypothesized shadows
with respect to objects. The existence of the line separating
the shadow pixels from the background pixels (the shadow
line) is checked when the shadow is not detached, that is,
an object is not floating, or the shadow is not projected
on a wall. If a shadow is completely detached, the second
hypothesis is not tested. In case a hypothesized shadow is
fully included in an object, the shadow line is not present,
and the hypothesis is then discarded.
3. Information integration. Finally, all the pieces of infor-
mation are integrated to determine whether to reject the
initial hypothesis.

The post-processing step results in a spatio-temporal
regularization of the classification results. The sample re-
sult presented in Figure 5 shows a comparison between
the result after the classification and the result after the
post-processing. To improve the visualization, the binary
change detection mask is superimposed on the original im-
age.

B. REGION PARTITION

The semantic partition identifies the objects from the
background and provides a mask defining the areas of
the image containing the moving objects. Only the ar-
eas of belonging to the semantic partition are considered
by the following step, which takes into account the spatio-

temporal properties of the pixels in the changed areas and
extracts spatio-temporal homogeneous regions. Each ob-
ject is processed separately and is decomposed in a set of
non-overlapping regions. The region partition, Πr, is com-
posed of homogeneous regions corresponding to perceptu-
ally uniform areas. The computation of this partition, re-
ferred to as region segmentation, is a low-level process that
leads to a signal dependent (data driven) partition.

The region partition identifies portions of the visual data
characterized by significant homogeneity. These homoge-
neous regions are identified through segmentation. It is
well-known that segmentation is an ill-posed problem [9]:
effective clustering of elements of the selected feature space
is a challenging task that years of research have not suc-
ceeded in completely solving. To overcome the difficulties
in achieving a robust segmentation, heuristics such as size
of a region and maximum number of regions may be used.
Such heuristics limit the generality of the approach.

To obtain an adaptive strategy based on perceptual sim-
ilarity, we avoid imposing the above mentioned constraints
but rather seek an over-segmented result. This is followed
by a region merging step.

Region segmentation operates on a decision space com-
posed of multiple features, which are derived from trans-
formations of the raw image data. Let us represent the
feature space as

g(x, y, n) =
(

g1(x, y, n), g2(x, y, n), . . . , gK(x, y, n)
)

, (1)

where K is the dimensionality of the feature space. The
importance of a feature depends on its value with respect
to other feature values at the same location, as well as to
the values of the same feature at other locations in the
image. Here we refer to these two phenomena as inter-
features reliability and intra-feature reliability, respectively.
In addition to the feature space, we define a reliability map
associated to each feature

r(x, y, n) =
(

r1(x, y, n), r2(x, y, n), . . . , rK(x, y, n)
)

. (2)

The reliability map allows the clustering algorithm to dy-
namically weight the features, according to the visual con-
tent. The details of the proposed region segmentation al-
gorithm are given in the following sections.

B.1 Spatial features

To characterize intra-frame homogeneity, we consider
color information and a texture measure. A perceptually
linear color space is appropriate, Lab, since it allows us
to use a simple distance function. The reliability of color
information is not uniform over the entire image. In fact,
color values are unreliable at edges. On the other hand
color information is very useful in identifying uniform sur-
faces. Therefore, we use gradient information to deter-
mine the reliability of features.We first normalize the spa-
tial gradient value to the range [0, 1]. If ng(x, y, n) is the
normalized gradient, the reliability of color information,
rc(x, y, n), is given by the sigmoid function

rc(x, y, n) =
1

1 + e−βng(x,y,n)
, (3)
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(a)

(b)

Fig. 6. The reliability of the motion features is evaluated through
the spatial gradient in the image. (a) Test sequence Hall Monitor
(b) Test sequence Highway. Dark pixels correspond to high values of
reliability

where β is the slope parameter. Low values correspond
to shallow slopes, higher values produce steeper slopes.
Weighting color information with its reliability in the clus-
tering algorithm improves the performance of the classifi-
cation process.

Since color provides information at pixel level, we sup-
plement color information with texture information based
on a neighborhood N , to better characterize spatial infor-
mation. Many texture descriptors have been proposed in
the literature, and a discussion on this topic is outside the
scope of this paper. In this work, we use a simple measure
of the local texturedness, namely, the variance of the color
information over N . To avoid using spurious values of lo-
cal texture, we do not evaluate this feature at edges. Thus,
the reliability of the texture feature is zero at edges, and
uniform elsewhere.

B.2 Temporal features

To characterize inter-frame homogeneity, we consider
the horizontal and vertical components of the displace-
ment vector at each pixel and their reliability. According
to [24], the best performance for optical flow computation
in terms of reliability can be obtained by the differential
technique proposed in [25], and by the phase-based tech-
nique of [26]. We select the differential technique ([25]),
since it is gradient-based and therefore allows us to reuse
the spatial gradient already computed for color reliability.

The results of motion estimation are noisy due to ap-

parent motion. We mitigate the influence of this noise in
two successive steps. First, we introduce a post-processing
(median filter) which reduces the noise in the dense opti-
cal flow field. Second, we associate a reliability measure to
the motion feature, based on its spatial context. The reli-
ability value derives from the fact that motion estimation
performs poorly (i.e., it is not reliable) in uniform areas,
whereas it shows better results in textured areas. Methods
based on optical flow do not produce accurate contours
(regions with homogeneous motion). For this reason the
reliability is given by the complement of the sigmoid func-
tion defined in Eq.(3). The motion reliability, rm(x, y, n),
is defined as

rm(x, y, n) = 1 − rc(x, y, n). (4)

Equation (4) allows the clustering algorithm to assign a
lower weight to the motion feature in uniform areas than
in those characterized by high contrast (edgeness).

B.3 Decision algorithm

The decision algorithm operates in two steps. First a
partitional algorithm provides over-segmented results, then
a region merging step identifies the perceptually uniform
regions. The partitional algorithm is a modified version of
the fuzzy C-means algorithm described in [13]. Such mod-
ified version is spatially unconstrained so that to allow an
improved flexibility when dealing with deformable objects.

The spatially unconstrained fuzzy C-means algorithm is
an iterative process that operates as follows. After ini-
tialisation, the algorithm assigns each pixel to the closest
cluster in the feature space (classification). For the com-
putation of the distance, each cluster is represented by its
centroid. The classification step results in a set of parti-
tions in the image plane. The difference between two par-
titions is calculated as a point-to-point distance between
the centroids of the respective partitions. This difference
controls the number of iterations of the algorithm: the it-
erative process stops when the difference between the two
consecutive partitions is smaller than a certain threshold
(cluster validation).

The feature space includes information from different
sources that are encoded with varying number of features.
For example, three features are used for color, and two
for motion. We refer to such groups of similar features
as feature categories. To avoid masking important infor-
mation when computing the distance, we use separate dis-
tance measures, Df , for each feature category. Since the
results of the separate proximity measures will be fused to-
gether, it is desirable that Df returns a normalized result,
especially in the case of poorly scaled or highly correlated
features. For this reason, we choose the Mahalanobis met-
ric. To compute the proximity of the feature point gj and
the centroid vi, the Mahalanobis distance can be expressed
as

Df (gj ,vi) =

√

√

√

√

K
∑

s=1

(gs
j − vs

i )
2

σ2
s

(5)
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Fig. 7. Example of region segmentation driven by the results of se-
mantic segmentation: (left) area of interest defined by the semantic
segmentation and (right) regions defined by the feature-based seg-
mentation

where σ2
s is the variance of the sth feature over the en-

tire feature space. The complete point-to-point similarity
measure between the gj and vi, is obtained by fusing the
distances computed within each category

D(gj ,vi) =
1

F

F
∑

f=1

wfDf (gs
j ,v

s
i ), (6)

where F is the number of feature categories and wf the
weight which accounts for the reliability of each feature
category. The value of F may change from frame to frame
and from cluster to cluster.

By projecting the result of the unconstrained partitional
clustering back into the data space, we obtain a set of re-
gions which may be composed of unconnected areas. Since
this result depends on the predetermined number of clus-
ters, C, we adapt the result to the visual content as fol-
lows. Disjoint regions are identified by connected compo-
nent analysis so as to form an over-segmented partition.
This over-segmented result undergoes a region merging step
which optimizes the partition by merging together the re-
gions which present perceptually similar characteristics.

Each disjoint region, Ri(n), is represented by its own re-
gion descriptor, Φi(n). The region descriptor is composed
of the same features used in clustering plus the position
of the region. The position and the other values stored
in the region descriptors are the mean values of the fea-
tures in the homogeneous regions. We can represent the
regions and the region descriptors by a region adjacency
graph, where each node corresponds to a region, and edges
joining nodes represent adjacency of regions. In our case,
we explicitly represent the nodes with region descriptors.

Region merging fuses adjacent regions which present sim-
ilar characteristics. A quality measure is established which
allows the method to determine the quality of a merged
region and to accept or discard a merging. The quality
measure is based on the variance of the spatial and tempo-
ral features. Two adjacent regions are merged only if the
variance in the resulting region is smaller or equal to the
largest variance of the two regions under test. Adjacent
regions satisfying the above condition are iteratively fused
together until no further mergings are accepted (Figure 7).

B.4 Region descriptors

A region defines the topology of pixels that are homoge-
neous according to a specific criterion. The homogeneity

symbolic domain
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Fig. 8. Different levels of visual content description. Left hand side:
from unstructured visual data (pixels) to structured visual data (re-
gions and objects). Right hand side: from the iconic domain (pixels)
to the symbolic domain (textual description)

criterion is defined with respect to one or more features in
the dense feature space. The values of the features charac-
terizing the region are distinctive of the region itself. We
summarize these feature values in a vector, henceforth re-
ferred to as region descriptor. Region descriptors are the
simplest way of representing the characteristics of regions.
A region descriptor, Φi(n), can be represented as

Φi(n) =
(

φ1
i (n), φ2

i (n), . . . , φ
Kn

i

i (n)
)T

(7)

where Kn
i is the number of features used to describe region

Ri(n). Φi(n) is an element of the region feature space.
The number and the kind of features may change from
region to region. Examples of features contributing to the
region descriptor are the motion vector, the color, and so
on. The selection of the features and their representation
is dynamically adapted, based on low-level analysis and on
the interaction between the region and semantic partitions.

C. VISUAL CONTENT DESCRIPTION

The region and semantic partitions are organized in a
partition tree. Such tree divides a set of objects into mu-
tually exclusive and jointly exhaustive subsets. The coars-
est partition level is the image itself (upper bound); at
the finest partition level, every pixel is a distinct partition
(lower bound).

The description is the result of a transformation from the
iconic domain, constituted by pixels, regions and objects,
to the symbolic domain, consisting of text. This trans-
formation allows us to compact and abstract the meaning
buried in the visual information. The description encodes
the values of the features extracted at the different stages
of the hierarchical representation.

The hierarchy in the iconic domain leads naturally to
several levels of abstraction of the description. The dif-
ferent levels of visual content description are depicted in
Figure 8. The graphical comparison presented emphasizes
the structural organization in the iconic domain as well
as the abstraction in the symbolic domain. For the sake
of simplicity, here we divide the description in two levels:
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low-level descriptors and high-level descriptors. The low-
level descriptors are derived from the dense and the region
feature spaces. The high-level descriptors are derived from
the semantic and the image feature space.

The two main levels of image data representation defined
by segmentation can be used to extract quantitative infor-
mation from visual data. This corresponds to the transi-
tion from information to knowledge and represents a useful
filtering operation not only for interpreting the visual in-
formation, but also as a form of data compression. The
transition from iconic domain (pixels) to symbolic domain
(objects) allows us to represent the information contained
in the visual data very compactly.

D. SEMANTIC AND REGION PARTITION INTERAC-
TION

The region and the semantic partitions can be improved
through interaction with one another. The interaction is
realized by allowing information to flow both ways between
the two partitional representations, so that the semantic in-
formation is used to improve the region segmentation result
and vice-versa.

An example of such interaction is the combined region-
semantic representation of the visual data. This combined
representation can be defined in two ways. One strategy
is to define homogeneous regions from semantic objects.
Information from the semantic partition is used to filter
out the pixels of interest in the region partition. This ap-
proach, known as the focus of attention approach, corre-
sponds to computing the region partition only on the ele-
ments defined by the semantic partition. The other way is
to construct semantic objects from homogeneous regions.
This corresponds to projecting the information about the
region partition onto the semantic partition.

We use both strategies to obtain a coherent temporal de-
scription of moving objects. Semantic video objects evolve
in both shape and position as the video sequence pro-
gresses. Therefore the semantic partition is updated over
time by linking the visual information from frame to frame
through tracking. The proposed approach is designed so
as to consider first the object as an entity (semantic seg-
mentation results) and then by tracking its parts region
segmentation results). The tracking mechanism is based
on feedbacks between the semantic and the region parti-
tions described in the previous sections. These interactions
allow the tracking to cope with multiple simultaneous ob-
jects, motion of non-rigid objects, partial occlusions, and
appearance and disappearance of objects. The block di-
agram of the proposed approach is depicted in Figure 9.

The correspondence of semantic objects in successive
frames is achieved through the correspondence of objects’
regions. Defining the tracking based on the parts of ob-
jects, that are identified by region segmentation, leads to
a flexible technique that exploits the characteristics of the
semantic video object tracking problem. Once the seman-
tic partition is available for an image, it is automatically
extended to the following image [15]. Given the seman-

region level

semantic level

labeling
segmentation

compensation

motion

video

input

region

segmentation

z

semantic

video

objects

semantic

−1

data

association

Fig. 9. Flow diagram of the proposed semantic video object ex-
traction mechanism based on interactions between the semantic and
the region partitions. These interactions help the tracking process to
cope with multiple simultaneous objects, partial occlusions, as well
as appearance and disappearance of objects

tic partition in the new frame and the region partition in
the current frame, the proposed tracking procedure per-
forms two different tasks. First, it defines a correspondence
between the semantic objects in the current frame n and
the semantic partition in the new frame n + 1. Second,
it provides an effective initialization for the segmentation
procedure of each object in the new frame n + 1. This ini-
tialization implicitly defines a preliminary correspondence
between the regions in frame n and the regions in frame
n + 1. This mechanism is described in Figure 10 and the
results of its applications are shown in the following section.

IV. RESULTS

In this section, the results of proposed algorithm for se-
mantic video object extraction are discussed. The proposed
algorithm receives as input a video, then extracts and fol-
lows each single video object over time. The results are
organized as follows: semantic video object extraction re-
sults are shown first. Then the behaviour of the algorithm
for track management issues, such as splitting and merg-
ing, is discussed. Finally, the use of the proposed algorithm
for content-based multimedia applications is discussed.

In Figure 11 and Figure 12 the sequences Hall Monitor,
from the MPEG-4 data set, and Group, from the European
project art.live data set, are considered. The sequences are
in CIF format (288×352 pixels) and the frame rate is 25 Hz.
The results of the semantic segmentation are visualized by
superposing the resulting change detection mask over the
original sequence.

The method correctly identifies the contours of the ex-
tracted objects. In the second row of Figure 12 it is possible
to notice that an error occurred: a part of the trousers of
the men are detected as background region. This is due to
the fact that the color of the trousers and the color of the
corresponding background region are similar. To overcome
this problem, a model of each object could be introduced
and updated over time. At each time, the extracted object
can be compared to its model. This would allow to detect
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projectionsegmentationprojection

frame n frame n+1  frame n+2

segmentation

semantic level

region level

Fig. 10. Semantic-region partition interaction in the case of one semantic video object. The semantic level provides the focus of attention
and it is improved by the feedback from the region level

Fig. 11. Semantic video object extraction results for sample frames of the test sequence Hall Monitor

Fig. 12. Semantic video object extraction results for sample frames of the test sequence Group

instances of a semantic video object which do not present
time coherence, as in the case of part of background and
moving objects presenting similar color characteristics.

Figure 13 shows examples of track management issues.
In the first row a splitting is reported. Figure 13(a) shows
a zoom on frame 131 of the sequence Hall Monitor. The
black line represents the contour of the semantic object de-
tected by the change detector. The man and its case belong
to the same semantic object. Figure 13(b) and (c) show a
zoom on frame 135. In this frame, the man and the case
belong to two different connected set of pixel. The goal of
tracking is to recognize that the case is coming from the
same partition of the man (splitting). In case the split-
ting is not detected, the identificator for a new object label
(coded with the white contour) is generated for the case
(Figure 13(b)). Therefore the history of the object is lost.
Figure 13(c) show the successful tracking of the case: the
case left by the man is detected as coming from the par-

tition of the man in the previous frame. This is possible
thanks to the semantic partition validation step. Region
descriptors projection allows the tracking algorithm to de-
tect that in two disconnected set of pixels in the semantic
partition the same label appears.

Figure 13(d) shows a zoom on frame 110 of the sequence
test Highway, from the MPEG-7 data set. The truck and
the van are identified by two unconnected partitions color
coded in white and black, respectively. Figure 13(e) and
(f) show a zoom on frame 115. In this frame, the truck and
the van belong the same semantic partition (merging). In
case a merging is not detected, the track of one of the two
object is lost, thus invalidating the temporal representation
and description of the semantic objects. In Figure 13(e) the
track of the van is lost and the two object are identified by
the same label, that of the truck (color-coded in black). As
for the splitting described above, in the case of a merging
as well, the semantic partition validation step generates a
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tentative correspondence that detects such an event. The
connected set of pixels of the semantic partition receives
from the region descriptors projection mechanism the la-
bels of the two different objects. This condition allows to
detect the merging. The semantic partition is therefore di-
vided according to the information of the projection and
the segmentation is performed separately in the two par-
titions. Therefore the two objects can be isolated, thus
allowing to access them separately over time.

(a) (b) (c)

(d) (e) (f)

Fig. 13. Example of track management issues: splitting of one object
into two objects (first row) an merging of two objects into one seman-
tic partition (second row). (a) Zoom on frame 131 of the sequence
Hall Monitor, (b) zoom on frame 135, (c) zoom on frame 135. (d)
Zoom on frame 110 of the sequence Highway, (e) zoom on frame 115,
(f) zoom on frame 115. The contour of the semantic object partition
is shown before ((b) and (e)) and after ((c) and (f)) interaction with
low-level regions in the proposed semantic video object extraction
strategy

The proposed semantic video object extraction algorithm
can be used in a large variety of content-based applications,
ranging from video analysis to video coding, from video
manipulation to interactive environments. In particular,
the decomposition of the scene into meaningful objects
can improve the coding performance over low-bandwidth
channels. Object-based video compression schemes, such
as MPEG-4, compress each object in the scene separately.
For example, the video object corresponding to the back-
ground may be transmitted to the decoder only once. Then
the video object corresponding to the foreground (moving
objects) may be transmitted and added on top of it so as
to update the scene. One advantage of this approach is
the possibility of controlling the sequencing of objects: the
video objects may be encoded with different degree of com-
pression, thus allowing a better granularity for the areas in
the video that are of more interest to the viewer. More-
over, objects may be decoded in their order of priority, and
the relevant content can be viewed without having to re-
construct the entire image. Another advantage is the pos-
sibility of using a simplified background, so as to enhance
the moving objects (Figure 14(a)). Finally, the background
can be selectively blurred during the encoding process in

(a) (b)

Fig. 14. Example of use of the proposed semantic video object ex-
traction algorithm. (a) The extraction of moving objects allows one
to reconstruct a scene with a simplified background, thus enhanc-
ing the visibility of the moving objects. (b) Example of use of se-
mantic video object extraction for preprocessed frame before coding:
the background information is blurred thus requiring less bandwidth
while still retaining essential contextual information

order to achieve an overall reduction of the required bit
rate (Figure 14(b)). This corresponds to the use of the
semantic object as region of interest.

V. CONCLUSIONS

The shift from frame-based to object-based image anal-
ysis has led to an important challenge: the extraction of
semantic video objects. This paper has discussed the prob-
lem of segmenting, tracking and describing such video ob-
jects. A general representation for modeling video based
on semantics has been proposed, and its validity has been
demonstrated through specific implementations. This rep-
resentation of visual information can be used in a wide
range of applications such as object-based video coding,
computer vision, scene understanding, and content based
indexing and retrieval.

The essence of this representation resides in the distinc-
tion between the notions of homogeneous regions versus
semantic objects. Based on this distinction, the task of
semantic video object extraction has been split into two
sub-tasks. One task is fairly objective and aims at iden-
tifying areas (i.e., regions) of the image which are homo-
geneous according to some quantitative criteria, such as
color, texture, motion, or some combination of these fea-
tures. Such an area is not required to have any intrinsic
semantic meaning. The identification of the appropriate
homogeneity criteria and the subsequent extraction of the
regions is performed by the system in a completely au-
tomatic way. The second task takes the characteristics
of the specific implementation into account, and aims at
identifying areas of the image that correspond to semantic
objects. In general, unlike the above-mentioned regions,
semantic objects lack global coherence in color, texture,
and sometimes even motion. The two sub-tasks generate
two kinds of partitions, namely the semantic and the re-
gion partition, that have been generated by two different
types of segmentation. Each kind of segmentation exploits
the specific nature of the problem to obtain a partition
that groups similar data elements together, in the selected
feature space.

While the advantages of the proposed video object ex-
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traction algorithm are evident by the results shown in the
previous section, there are several interesting questions
that remain to be investigated. Of primary interest is a
change detection mechanism which could provide high spa-
tial accuracy in case of global illumination variations. We
are currently evaluating the use of edges and photometric
invariant color features to this end. Moreover, even if the
visual data representation of Section II is generic and can
deal with static as well as moving cameras, in the imple-
mentation of Section III we have assumed that the camera
is fixed. This scenario is valid for many surveillance type
applications. One natural extension is to deal with moving
camera sequences, by integrating the global motion infor-
mation. Furthermore, depending on the constraints of the
application, such as acceptable levels of delay and com-
plexity, each specific component of the architecture may
be replaced with a more adequate one without changing
the general approach, so as to optimize such modules for
each specific application. Finally, the modularity of the
system allows us to add other features. This flexibility also
allows us to integrate information derived from different
sensors, such as an infrared camera, by simply adding the
appropriate modules to the same existing structure, and
other data fusion modules.
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