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Abstract

Local illumination changes due to shadows often re-
duce the quality of object-based video composition
and mislead object recognition. This problem makes
shadow detection a desirable tool for a wide range
of applications, such as video production and visual
surveillance. In this paper, we present an algorithm
for the isolation of video objects from the local il-
lumination changes they generate in real world se-
quences when camera, illumination and scene’s char-
acteristics are not known. The algorithm combines
a change detector and a shadow detector with a
spatio-temporal verification stage. Colour informa-
tion and spatio-temporal constraints are embedded
to define the overall algorithm. Colour information
is exploited in a selective way. First, relevant areas
to analyse are identified in each image. Then, the
colour components that carry most of the needed in-
formation are selected. Finally, spatial and temporal
constraints are used to verify the results of the colour
analysis. The proposed algorithm is demonstrated
on indoor as well as outdoor video sequences. More-
over, performance comparisons show that the pro-
posed algorithm outperforms state-of-the-art meth-
ods.

1 INTRODUCTION

Advances in hardware and digital video analysis and
editing technologies are favouring the rapid develop-
ment of applications such as video post-production,
immersive gaming, realistic video conferencing, natu-
ral human-computer interfaces, home video and cor-
porate communications [1]. The diffusion of digital
video cameras and powerful personal computers is
also driving the introduction of authoring tools to
the home and corporate markets for the creation of
new and richer content [2]. A way to create new
and richer content is by extracting natural objects
from a scene and then composing them in a new
scene with artificial objects, such as for immersive
gaming and rich media presentations, or with other
objects captured by multiple remote sensors, such as
for immersive video conferencing. To extract natural
objects, professional studio productions can afford
spaces with controlled lighting as well as dedicated

cameras equipped with depth sensors or with ring of
LEDs coupled with a special retro-reflective cloth [3].
The need for this equipment represents a limitation
for the introduction of authoring tools to the home
market.

In order to make authoring techniques affordable
for home production too, the set-up of the scene from
which the objects are extracted should be simplified.
The ideal solution is to use a digital video camera to
extract characters without the need of ad-hoc scenes
or ad-hoc cameras. This simplification leads to the
problem of segmenting video objects without using
a blue screen and without being affected by illumi-
nation changes due to shadows [4]. In this work, we
focus our attention on this problem and in particu-
lar on the problem of extracting and processing mov-
ing shadows. We propose an algorithm for the sep-
aration of video objects and their shadows which is
based on colour information and spatio-temporal ver-
ification. Colour information is exploited by means
of the RGB colour space and by means of photo-
metric invariant features. A spatio-temporal veri-
fication stage is then introduced to refine the re-
sults. Although the shadow segmentation problem
has been increasingly studied in the past years ([5]—
[19]), there exists no generally accepted method to
detect shadows in image sequences. The conclusion
of the review presented in [23] is that different ap-
proaches to shadow detection should be taken when
addressing different kind of scenes. In addition to
this, we observed that some methods use the same
information in a contrasting way as cue to detect
shadows. An example is given by the use of Satura-
tion which is in some cases described as increasing
in shadows while in other cases as decreasing. This
contradiction demonstrates the difficulty of defining
a general model describing the effect of a shadow.
According to the taxonomy presented in [23], the
proposed method belongs to the deterministic non-
model based class, which includes the techniques pre-
sented in [5, 9, 10, 11, 12, 17]. The methods pre-
sented in [5, 9] use gray-level information only to de-
tect moving shadows. Colour information for detect-
ing moving shadows is considered in [10, 11, 12, 17].
The user-oriented HSV space is used in [11], whereas
the hardware-oriented YCbCr and YUV spaces are
used in [10] and [12], respectively. A spatial veri-
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Figure 1: Block diagram of the proposed system for
the separation of video objects (a) and their shadows

(b)

fication process for refining object and shadow de-
tection results is employed in [10]. The convex hull
of the foreground edge points which are not candi-
date shadow points after colour analysis is used to
extract the final object mask. This limits the perfor-
mance of the method with non-convex objects, such
as people. Finally, the dichromatic reflection model
is adopted in [17] to model RGB changes in shadows
and the body colour vector of candidate shadow re-
gions is first estimated and then compared with the
estimated body colour of the background to verify
the results. This method requires a training phase
to calculate the body colour of background surfaces
that come under shadow in each different scene it is
applied to. The method we present in this paper is
designed to be able to work on different types of ob-
jects and when scene’s characteristics are not known.
Its block diagram and an example of result are shown
in Fig. 1.

The paper is organised as follows. Section 2 de-
scribes the change detection algorithm. The shadow
detection algorithm is presented in Section 3. Next,
Section 4 introduces the verification method. Ex-
perimental results and examples of applications are
discussed in Section 5. Finally, in Section 6 we draw
the conclusions and discuss future work.

!

Figure 2: Examples of change detection results. Ob-
jects as well as their shadows are segmented

2 CHANGE DETECTION

Change detection aims at detecting moving objects
by deciding whether the foreground signal corre-
sponding to an object is present after background
subtraction, while discarding the effect of the camera
noise. To discount the residual effect of the camera
noise, the frame difference between the current image
and the background image is binarized by thresh-
olding. Early change detection techniques fix the
threshold empirically and perform sufficiently well on
sequences where moving objects are well contrasted
from the background. However, thresholds have to
be tuned manually according to the characteristics
of the sequence and often need to be updated from
one frame to another along the sequence itself. These
major drawbacks limit this approach for fully auto-
matic applications. To overcome these problems and
to obtain a much more flexible procedure, we employ
a locally adaptive threshold ([22]). This dynamic
thresholding strategy models the noise statistics and
applies a significance test. The noise model is defined
based on the following assumptions: all pixels in the
neighbourhood have changed only because of noise
(hypothesis Hy), and each frame of the sequence is
affected by an additive Gaussian noise with a cer-
tain mean and variance. Under these hypotheses the
noise model is described by a x? distribution, whose
properties depend on the number of pixels in the
neighbourhood and on the variance of the Gaussian
noise affecting each frame of the sequence. Given the
x? distribution and a significance level «, the adap-
tive value of the threshold 7, can be computed auto-
matically. The significance level « is a stable param-
eter that does not need manual tuning. An example
of change detection result from the test sequence Hall
Monitor is presented in Fig. 2. It is possible to notice
that shadows are detected by the change detector as
part of the objects. A further shadow detection stage
is therefore needed to improve the spatial accuracy
of the segmented objects.

3 SHADOW DETECTION

Shadows are difficult phenomena to model. A
shadow does not have its own appearance, but that



of the material it is cast upon. Furthermore, a num-
ber of factors influence the appearance of a shadow.
The shadow segmentation problem is generally faced
by embedding multiple constraints when processing a
video: the problem is to define the most appropriate
constraints and how to embed them in the shadow
detection algorithm.

3.1 EMPIRICAL ANALYSIS

Shadows cannot be defined by a specific colour ap-
pearance. However, it is possible to characterise a
shadow by considering its effect on the colour ap-
pearance of the region on which it is cast. We want
to exploit this property of shadows to derive a num-
ber of general rules that hold for a large number of
test sequences. In particular the algorithm should
be designed to work when camera, illumination and
scene’s characteristics are unknown. To this end, we
compare each frame of a video sequence to a refer-
ence frame in order to characterise the presence or
absence of a shadow (Fig. 3). Comparing the incom-
ing video frame with a reference frame is a widely
used approach in the related literature. For the ap-
plications addressed in this paper, it is reasonable
to assume that a reference image is available, either
as a snapshot of the scene or as a model resulting
from a learning process [22]. The advantage of using
a reference image representing the background com-
pared to the alternative of using the previous frame is
that it is possible to avoid the dependence on objects
speed. We also assume that the camera is static, but
the same procedure can be applied to a moving cam-
era sequence after global motion compensation [9].

The comparison between the current and the ref-
erence frame is based on colour information. Colour
analysis is performed in order to identify those pixels
in the image that respect chromatic properties of a
shadow. The RGB colour space as well as photomet-
ric invariant features are considered in the analysis.
Photometric invariant features are functions describ-
ing the colour configuration of each image coordi-
nate discounting local illumination variations, such
as shadings and shadows. Examples of photomet-
ric invariant features are Hue and Saturation in the
HSV colour space and the normalised-RGB colour
space. The normalised-RGB colour space, the rgb
colour system, was chosen for its fast computation
since it can be obtained by dividing the R, G and B
coordinates by their total sum. The transformation
from the RGB coordinates to the normalized colour
space is given by

_ R . G . B
“R+G+B YT RyGtB _R+G+l?'
1

r

This transformation projects a colour vector in the
RGB cube into a point on the unit plane described
by r+ g+ b = 1. Two out of the three rgb variables
suffice to identify the coordinates of the colour point

Figure 4: Pre-processing stage. Frame 37 of the
test sequence Hall Monitor (left) and corresponding
shadow selection map (right). Pixels discarded from
the colour analysis stage are identified by the black
label

in this plane.

The main rules derived from the empirical anal-
ysis are the following. First, a shadow darkens each
colour component of the point on which it is cast.
Second, the colour components do not change their
order when a shadow occurs. Third, photometric
invariant features do not change their value when
an illumination change, such as a shadow, occurs;
whereas they are likely to change their value in case
of a material change. We use this information to
define a strategy to detect shadows based on colour
information. The details of the proposed method are
described in the following sections.

3.2 PRE-PROCESSING

In order to reliably detect shadows, colour informa-
tion is exploited in a selective way. First, the relevant
parts to analyse are identified in each image. Then,
the colour components that carry most of the needed
information are selected. The relevant pixels that are
suitable for the colour analysis are identified in a se-
lection map. The computation of the map aims at
eliminating the information which is useless or might
mislead the colour analysis. In particular, the selec-
tion map identifies the pixels in achromatic parts of
the scene. Typically a lower threshold is used to
eliminate areas with low luminance values [11, 14].
Moreover, when considering rgb colour components
in Eq. (1), the invariance is obtained at the cost of
singularities and instabilities near the black vertex
of the RGB cube. To avoid these instabilities, the
volume close to the black vertex is not considered
in the analysis process. The shadow selection map,
m(z,y,t), is a binary map indicating all the pixels
whose colour components are smaller than the 20%
of the colour dynamic range. Figure 4 shows an ex-
ample of selection map.

The second stage of the pre-processing reduces
the set of colour components to be considered in
the subsequent colour analysis. The rationale behind
this stage is that a colour component with a small
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Figure 3: Comparison of the changes on the colour components of the RGB and rgb colour spaces at the passage
of a shadow and an object. (a) Sample frame from the test sequence Hall Monitor and temporal region of interest
(ROI) with a cast shadow. The passage of the cast shadow is highlighted for 50 frames. (b) Profile of the R, G,
and B colour components in the selected ROI (c) Profile of the r, g, and b components in the same ROIL It is
possible to notice the invariance properties of the rgb colour features. (d) Sample frame from the test sequence
Laboratory and temporal region of interest (ROI) with the passage of an object and a cast shadow (highlighted
for 29 frames). (e) Profile of the R, G, and B colour components in the selected ROI. The colour components
decrease their value but do not change their order when a shadow occurs, whereas the colour components may
change their order when an object passes. (f) Profile of the r, g, and b components in the same ROL. It is possible
to notice the different behaviour of the colour components in the presence of an object and in the presence of a
shadow

value is highly influenced by the effects of reflections
and ambient lighting and it is less discriminative for
detecting shadows. This stage aims at choosing only
those components that carry most of the informa-
tion for the colour analysis. We observed that a
shadow can be better characterised by analysing the
behaviour of the colour components with the larger

values. This conclusion can guide the algorithm in
eliminating from the analysis those colour features
that do not add relevant information for the detec-
tion process. The smallest component is therefore
not considered in the analysis.

Following the selection process in the pre-



Figure 5: Shadow detection results with (a) colour analysis only; (b) colour analysis and spatial verification; (c)

colour analysis and spatio-temporal verification

processing, each pixel (z,y,t) at time t which is
not eliminated by the selection map m(x,y,t) is de-
scribed by a feature vector f(z,y,t) representing the
value of the colour features f;(x,y,t) that have been
selected through the colour selection stage. The fea-
ture vector can be represented as

f(ﬁ(},y,t) = (fl(xay»t)a f?(xvyat)v f3(x7y7t)» f4(.’17,y,t)),

2)
where f1(x,y,t) and fo(z,y,t) are the selected com-
ponents from the RGB space, and f3(z,y,t) and
fa(x,y,t) are the selected components from the rgb
space. On the other hand, the pixels eliminated from
the colour analysis by the selection map are then
treated separately in the post-processing.

3.3 COLOUR ANALYSIS AND
POST-PROCESSING

The feature vector f(x,y) selected in the pre-
processing is analysed based on the results of the
empirical analysis described in Section 3.1. The ef-
fect of a shadow is the darkening of each point on
which it is cast. Let (x,y,tr) be a background pixel
and (x,y,t) the corresponding pixel in the image un-
der test. The test in the RGB space is defined by

{ fl(x7y7tR) > fl(wv:%t) (3)
fZ(x»yatR) > fg(ﬁ(},y,t)

This test is satisfied by a shadow, but also by an
object which is darker than the corresponding back-
ground. To improve the selectivity, the colour infor-
mation in the RGB space needs to be complemented
by additional constraints. An additional constraint
is based on exploiting the property of photometric in-
variant features. Photometric invariant features do
not change their value when an illumination change
occurs. On the other hand, they are likely to change
their value in case of a material change. This con-
straint can be represented by the following condition

{ fg(l’, yatR) = f3(w7y7 t) (4)
f4(x»y7tR) = f4(3€,y,t)

The results of the analysis on f; and fs, and that
on f3 and f4 are then fused to produce the shadow
map. The fusion is the logical AND between the
two partial results. The shadow map is then post-
processed based on the selection map and on mor-
phology in order to obtain spatially extended shadow
areas (Fig. 5(a)).

4 VERIFICATION

Shadow detection based on colour analysis alone is
not discriminative enough to allow for reliable seg-
mentation, as shown in Fig. 5(a). The nature of
the shadow detection problem provides us with ad-
ditional information and therefore other constraints
can be embedded in the algorithm based on contex-
tual information. For this reason, after colour anal-
ysis, the shadow map undergoes a spatio-temporal
verification process as described in the following.

4.1 SPATIAL VERIFICATION

Although the colour appearance of a shadow is un-
defined by nature, it is possible to define some con-
straints for its geometric appearance. The geomet-
rical characteristics of shadows can be defined with-
out any knowledge of the structure of the object or
of the scene. In particular, the existence a line sep-
arating the shadow from the background is a nec-
essary condition for the presence of a shadow. In
order to check this condition, the relative position
of the candidate shadow edge pixels is compared to
the position of background and object pixels. Ob-
ject pixels are pixels in the change detection mask
that do not belong to the candidate shadow mask.
This verification eliminates candidate shadows that
are erroneously detected inside an object. In this
case, shadow edge pixels are adjacent to object pix-
els only (Fig. 5(a), upper shadow). Shadows whose
edge pixels are adjacent to object pixels as well as to
background pixels are not eliminated (Fig. 5 5(b)).
Further temporal processing is necessary to reduce
this type of error.



Figure 6: Shadow detection results for sample frames of the test sequence (from top to bottom) Improvisation,

Intelligent Room, Hall Monitor, Surveillance, and Highway

4.2 TEMPORAL VERIFICATION

The final verification is based on the temporal con-
sistency of shadows. Temporal verification aims at
providing a coherent description of the segmented
shadows over time. The goal is to track shadows
from frame to frame, that is to establish a corre-
spondence between instances of moving shadows over
time. Shadow tracking is a difficult task because
shadows are not characterised by their own appear-
ance and their shape may change rapidly. For this
reason, most of the object tracking algorithms can-
not be employed for shadow tracking. A shadow
tracking algorithm has to be defined based on the
limited amount of information available to describe
a shadow and its evolution over time. To this end, we

employ a temporal filter based on Nearest Neighbour
([21]). Tracking allows us to compute the life-span of
each shadow. From each shadow’s life-span, a heuris-
tic rule is used to derive a temporal reliability esti-
mation, which is used to validate or to discard each
shadow detected in the previous stage. We observed
in fact that short-lived shadows are highly likely to
be due to a shadow detection error. This simple
tracking mechanism allows one to remove shadows
with a low temporal reliability, as shown in Fig. 5(c).

5 RESULTS

The results of the object and shadow detectors de-
scribed in this paper as well as examples of applica-
tions of the proposed method are presented in this



section. Subjective and objective evaluation and
comparison with state-of-the-art techniques are in-
troduced in order to evaluate the performance by
comparison with alternative methods. The results
are evaluated subjectively by showing the detected
shadows superimposed over the original image and
colour-coded in white (see Fig. 1(b)). Furthermore,
objective evaluation is performed with respect to a
ground-truth segmentation by comparing the results
of the change detector enhanced with the shadow de-
tector (see Fig. 1(a)).

5.1 Shadow isolation

Test sequences from the MPEG-4 and MPEG-7 data
set are used, as well as test sequences from the test
set of the ATON project and the European project
art.live (Figure 6). The sequences are in CIF for-
mat (288 x 352 pixels) and the frame rate is 25 Hz,
unless otherwise stated in the remainder of the sec-
tion. The sequence Improvisation (Figure 6, first
row) is taken from the data set of the IST European
project art.live. This scene represents a typical situ-
ation for video production where an actor moves in
the scene generating multiple shadows. It is possible
to notice that the shadow detector correctly iden-
tifies the shadows and the segmentation results are
stable over time. We would like to highlight here
that the detection is performed without any model
of the scene, the illumination, or the captured ob-
ject. A different scene set-up is shown for the test
sequence Intelligent Room in the second row. The
format of this sequence is 320 x 240. Here the scene
is more complex compared to the previous sequence
and the object casting shadows is smaller. However,
shadows cast on the floor as well as on the walls are
correctly detected. Similarly, the third row shows
the shadow detection results for the MPEG-4 test
sequence Hall Monitor. To demonstrate the perfor-
mance of the proposed method in outdoor scenes,
the test sequences Surveillance (fourth row, format
352 x 240) and Highway (fifth row) are considered.
The fourth row shows the shadow detection results
in case of a deformable object, which can illustrate,
for instance, a situation of outdoor video produc-
tion. Finally, the MPEG-7 test sequence Highway
illustrates how the proposed method can work for
fast moving objects.

5.2 Performance comparison

The detection of shadows can be exploited to im-
prove the performance of algorithm extracting video
objects which are based on change detection. The
objective evaluation is performed here by comput-
ing the deviation of the object segmentation with
respect to a ground-truth segmentation. Defining
the ground-truth segmentation of video objects is
more reliable than defining the ground-truth segmen-
tation of shadows. The generation of a ground-truth

for shadows is ambiguous: the outer boundary of
a shadow occurs at points of infinitesimal decrease
in the amount of illumination. As a result, the ex-
act boundary of a shadow cannot be manually de-
termined in a reliable way. In addition to this, a
segmentation quality measure depends on the needs
of the application in which the segmentation algo-
rithm is used. For these reasons, we quantify the
performance of shadow detectors when used in com-
bination with a change detector.
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Figure 7: Comparison of the proposed algorithm
with state-of-the-art methods. The plots represent
the spatial accuracy v(t) of object segmentation.
(Top) Test sequence Hall Monitor. (Bottom) Test
sequence Intelligent room

Two types of errors can be defined in each frame
of the sequence ¢, namely false positives €,(t), and
false negatives €,(t). False positives are pixels in-
correctly detected as belonging to the object mask.
False negatives are pixels belonging to the object
that are not detected. If card(C(t)) represents the
number of pixels detected as object pixels at frame
t, and card(Cy(t)) the number of pixels belonging
to the ground-truth, then, when Card(C(t)) # 0 A
Card(Cy(t)) # 0, we compute the deviation from the
reference segmentation as

_ en(t) + (1) (5)
Card(C(t)) + Card(Cy(t))’

e(t)



where €(t) € [0,1]. The spatial accuracy of the seg-
mentation result, v(t), is then

v(t) =1 —€(), (6)
where v(t) € [0,1]. The larger v(t), the higher the
spatial accuracy. If v(t) = 1, then there is a per-
fect match between segmentation results and ground-
truth. The results of the objective comparison for the
test sequence Hall Monitor and Intelligent room are
presented in Fig. 7. The symbols in the legend refer
to the shadow detection technique used in the object
extraction process: DNMI [11], DNM2 [9], SP [13],
SNP [14]. The mean values of accuracy correspond-
ing to the plots in Fig. 7 are summarised in Table 1.
It is possible to notice that the proposed combination
of change and shadow detection (PROP) provides
a more accurate segmentation than state-of-the-art
methods.

Table 1: Mean object segmentation accuracy for the
test sequences Hall Monitor (HM) and Intelligent
room (IR).

Sequence | DNM1 DNM2 SP SNP PROP
HM 0.78 0.60 0.59 0.63 0.86
IR 0.86 0.77 0.89 0.89 0.90

5.3 Example of applications

We conclude the results section with two examples
of application of the proposed method in which it is
possible to appreciate the benefits introduced by the
shadow detector.

The first example of application of the proposed
method is the detection of multiple simultaneous ob-
jects. Figure 8 shows a scene with three people walk-
ing in a room and casting several shadows which
are caused by their interaction with multiple light
sources. In this scene, a model based method for
shadow recognition would fail due to the complex-
ity of the scene. The proposed method is based on
shadow properties and therefore can be applied to
complex scenes, when shadows and object occlude
each other. Cast shadows are typically attached to
the shadow-casting object and cause segmentation
errors by creating false adjacency between objects.
An example of this problem is shown by two ob-
jects getting close to each other (Figure 8(a), first
row) that are erroneously extracted as a single ob-
ject when using the change detector only. When
the shadow segmentation algorithm is applied (Fig-
ure 8(b)), the identification of shadow regions allows
to solve the object segmentation problem and each
person is assigned a separate bounding box (Fig-
ure 8(c)).

The second example of application of the pro-
posed method is video composition without the use

(a) (b)
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Figure 9: Home set-up for video composition. Sam-

ple frame from the test sequence used for video com-
position (a) and background image (b)

of studio equipment. Figure 9(a) shows a sample
frame from a test sequence recorded with a digi-
tal video camera in an ordinary room illuminated
by a table lamp and by the light entering from
the windows. The aim is to create a composite
video emulating a weather forecast bulletin by plac-
ing the extracted object over a weather forecast map
(Figure 9(b)). Figure 10 (top) shows some sample
frames of the composite scene obtained without us-
ing shadow information. The absence of illumination
effects due to shadows gives the impression of a flat
2D scene. The human brain does not in fact receive
strong cues to infer depth information in the scene.
Illumination effects have an important role in the
perception of visual scenes and discarding them lim-
its the visual quality of the scene composition due to
a lack of naturalness. Shadows cast by objects on a
background surface are informative about the shape
of the object, the background and the spatial ar-
rangement of the object relative to the background,
especially when the shadow is in motion [24]. To im-
prove the quality of the scene, shadows are explicitly
segmented in the original scene and then rendered in
the composite scene. This results in an augmented
naturalness, as shown in Figure 10, bottom. The
hand now appears clearly positioned in a 3D space
and a realistic result is obtained, as if the hand had
been filmed directly in front of the background im-
age. The effect is more evident when the entire se-
quence is viewed since the object and shadow motion
enhances the depth perception.

6 CONCLUSIONS

We addressed the problem of isolating video objects
and their shadows by exploiting three sources of in-
formation, namely colour, spatial, and temporal con-
straints. The proposed algorithm for object and
shadow segmentation is designed to work when the
imaging conditions and the scene set-up are not un-
der control. This algorithm does not require the
knowledge of objects or scene models, nor requires
external intervention. The selective use of colour,
the use of photometric invariants, and the integra-



Figure 8: Isolating objects from their shadows enables the separation of multiple simultaneous objects. (a)
Multiple moving objects, represented by their bounding boxes, are extracted as a single object by change detec-
tion in three sample frames of the test sequence Group. (b) Classification into object, shadow and background.
Objects are displayed in grey, shadows in white. (c¢) Using the classification in (b), the segmentation errors are

reduced and each object is represented by one bounding box

tion of spatial and temporal information allowed us
to improve the performance of state-of-the-art meth-
ods.

Given the modularity of the proposed method,
the different stages can be modified according to
speed or to accuracy requirements. For example,
colour analysis alone could be used for applications
that do not require high accuracy, such as for the
identification of the direction of the light source.
Current work includes the optimisation of the code
to reach real-time performance and the extension of
the method to a multi-camera environment.
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