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ABSTRACT

We present a full-reference and a no-reference percep-
tual video quality metric that incorporate both low-level and
high-level aspects of vision. Low-level aspects include color
perception, contrast sensitivity, masking as well as artifact
analysis. High-level aspects take into account the cognitive
behavior of an observer when watching a video by means of
semantic segmentation. Using the special case of semantic
face segmentation, we evaluate the proposed segmentation-
driven perceptual quality metrics using a range of test se-
quences and demonstrate an improvement of their predic-
tion performance.

1. INTRODUCTION

Reducing the bandwidth and storage requirements of im-
ages and video while increasing their visual quality is a pri-
ority in the development of new compression or transmis-
sion systems, and guaranteeing a certain level of quality has
become an important concern for content providers. As it
is typically the viewer who judges quality, subjective exper-
iments have been the only accepted way of obtaining reli-
able quality ratings. Predicting these subjective ratingsus-
ing an automatic visual quality metric with higher accuracy
than peak signal-to-noise ratio (PSNR) has been the topic of
much research in recent years.

Two approaches for perceptual quality metric design can
be distinguished [1]: One class of metrics implements a
general model of low-level visual processing in the retina
and the early visual cortex. Metrics in this class typically
require access to the reference video for difference analy-
sis. The other class of metrics looks for specific features in
the image, for example compression artifacts arising from a
certain type of codec, and estimates their annoyance. How-
ever, none of today’s metrics quite achieve the reliabilityof
subjective experiments.

One of the common shortcomings of quality metrics is
the fact that they analyze the entire scene uniformly, assum-
ing that people look at every pixel of the image or video. In
reality, we do not scan a scene in raster fashion. Our visual

attention tends to jump from one point to another. These
jumps are calledsaccades. Yarbus [2] demonstrated that the
saccadic patterns depend on the visual scene as well as the
cognitive task to be performed. The studies of Bajcsy [3]
also led to the conclusion thatwe do not see, we look. We
focus our visual attention according to task at hand and the
scene content.

In this work, we attempt to emulate the human visual
system to prioritize the visual data in order to improve the
prediction performance of perceptual quality metrics. Sec-
tion 2 discusses the factors influencing the cognitive behav-
ior of people watching a video. In Section 3 we describe
how this behavior can be incorporated into a quality metric
by means of semantic segmentation. The prediction perfor-
mance of the proposed metrics is discussed for the special
case of face segmentation in Section 4. Finally, we draw
some conclusions and describe the directions of our current
work in Section 5.

2. COGNITIVE BEHAVIOR

While most vision models and quality metrics are limited to
lower-level aspects of vision, the cognitive behavior of peo-
ple when watching video cannot be ignored. However, cog-
nitive behavior may differ greatly between individuals and
situations, which makes it very difficult to generalize. Nev-
ertheless, two important aspects can be pointed out, namely
the focus of attention and thetracking of moving objects.

2.1. Focus of Attention

When watching video, we focus on particular areas of the
scene. Studies have shown that the direction of gaze is not
completely idiosyncratic to individual viewers. Instead,a
significant number of viewers will focus on the same re-
gions of a scene [4]. Naturally, this focus of attention is
highly scene-dependent. Maederet al. [5] proposed con-
structing an importance map for the sequence as a predic-
tion for the focus of attention, taking into account percep-
tual factors such as edge strength, texture energy, contrast,
color variation, homogeneity, etc.



One of the objects attracting most of our attention are
people and especially human faces. If there are faces of peo-
ple in a scene, we will look at them immediately. Further-
more, because of our familiarity with people’s faces, we are
very sensitive to distortions or artifacts occurring in them.
The importance of faces is also underlined by a study of
image appeal in consumer photography [6]. People in the
picture and their facial expressions are among the most im-
portant criteria for image selection.

2.2. Object Tracking

In a similar manner, viewers may also track specific mov-
ing objects in a scene. In fact, motion tends to attract the
viewers’ attention. Now, the spatial acuity of the human
visual system depends on the velocity of the image on the
retina: as the retinal image velocity increases, spatial acu-
ity decreases. The visual system addresses this problem
by tracking moving objects with smooth-pursuit eye move-
ments, which minimizes retinal image velocity and keeps
the object of interest on the fovea. Smooth pursuit works
well even for high velocities, but it is impeded by large
accelerations and unpredictable motion [7]. On the other
hand, tracking a particular movement will reduce the spa-
tial acuity for the background and objects moving in differ-
ent directions or at different velocities. An appropriate ad-
justment of the spatio-temporal contrast sensitivity function
(CSF) as outlined in [8] to account for some of these sensi-
tivity changes can be considered as a first step in modeling
such phenomena.

3. SEGMENTATION-ENABLED QUALITY
METRICS

Based on the observations of the previous section, the pro-
posed perceptual quality metrics take into account both low-
level and high-level aspects of vision. To achieve this, a
segmentation stage is added to the metrics to find regions of
interest. Its output then guides the pooling process by giv-
ing higher weight to the regions with semantically higher
importance.

3.1. Low-level Contribution

We used two different metrics in this work, a full-reference
perceptual distortion metric (PDM) based on a vision model,
and a no-reference video quality metric based on the analy-
sis of common artifacts.

The full-reference PDM is based on a contrast gain con-
trol model of the human visual system that incorporates spa-
tial and temporal aspects of vision as well as color percep-
tion [9]. The metric requires both the reference sequence
and the distorted sequence as inputs. After their conver-
sion to a perceptual opponent-color space, each of the re-

sulting three components is subjected to a spatio-temporal
filter bank decomposition, yielding a number of perceptual
channels. They are weighted according to contrast sensitiv-
ity data and subsequently undergo contrast gain control for
the modeling of pattern masking.

The no-reference quality metric estimates visual qual-
ity based on the analysis of blockiness, blur and jerkiness
artifacts found in the video [10]. It does not need any in-
formation about the reference sequence. The metric is part
of Genista’sMedia Optimacy andStream PQoS tools. The
use of a no-reference metric is particularly interesting here
because semantic segmentation does not require a reference
video either.

Both of these metrics can make local quality measure-
ments in small subregions over a few frames in every video.
The process of combining these low-level contributions into
an overall quality rating is guided by the result of the seman-
tic segmentation stage described in the following section.

3.2. High-level Contribution

The high-level contribution to the quality metrics takes into
account the cognitive behavior of people when watching a
video. To represent the semantic model of a specific cog-
nitive task, we decompose each frame of the reference se-
quence into sets of mutually exclusive and jointly exhaus-
tive segments. This semantic model corresponds to a spe-
cific human abstraction, which need not necessarily be char-
acterized by perceptual uniformity. The semantics (i.e. the
meaning) are defined through human abstraction. Conse-
quently, the definition of the semantic partition depends on
the task to be performed. The partition is then derived by se-
mantic segmentation. In general, the topology of the seman-
tic partition cannot be expressed using homogeneity criteria,
because the elements of such a partition do not necessarily
possess invariant properties. Some knowledge of the ob-
jects we want to segment (a priori information) is therefore
required.

For example, for segmenting moving objects, motion in-
formation can be used as semantics. The motion of an object
is usually different from the motion of background and other
surrounding objects. For this reason, many extraction meth-
ods make use of motion information in video sequences to
segment objects [11]. An example of semantic segmenta-
tion result is shown in Figure 2.

If we want to segment faces of people, color-based seg-
mentation can be used. A number of relatively robust al-
gorithms for face segmentation are based on the fact that
human skin colors are confined to a narrow region in the
chrominance (CB, CR) plane [13], and their distribution is
quite stable [14]. When the goal is to detect the presence
of faces in a video and their location, a cascade of simple
classifiers can be used [12]. Each classifier is trained to de-
tect a specific face feature, such as the intensity difference



Fig. 1. Example of semantic segmentation result.

between the eye region and the upper cheek or between the
eye region and the bridge of the nose. An example of face
detection result is shown in Figure 3.

Fig. 2. Example of face detection result.

4. EVALUATION

4.1. Test Material

We used test sequences from three different subjective test-
ing databases available to us:

1. VQEG Phase I database [15]. This database com-
prises mainly TV material with 16 test conditions. 3
relevant scenes were selected from this database to
evaluate the full-reference PDM.

2. PC video database [16]. This database was created
with CIF-size video and various DirectShow codecs
at bitrates of 1-2 Mb/s, for a total of 8 test conditions.
We picked 2 scenes from this database to evaluate the
full-reference PDM.

3. Internet streaming database [10]. This database con-
tains clips encoded with MPEG-4, Real Media and
Windows Media at 256 and 512 kb/s as well as some
packet loss (7 conditions in total). 4 scenes from this
database were used. Due to the test conditions here,
these sequences cannot be properly aligned with the
reference. Therefore, we use this set for the evalua-
tion of our no-reference metric.

The scenes we selected from these databases contain faces
at various scales and with various amounts of head and cam-
era movements. Some examples are shown in Figure 4.

Fig. 3. Sample frames from selected test sequences.

4.2. Prediction Performance

To evaluate the improvement of the prediction performance
due to face segmentation, we compare the predictions of the
regular full-frame metrics with those of the segmentation-
supported metrics for the different data sets.

The results of the evaluation for our three data sets are
shown in Figure 5. Segmentation generally leads to a better
agreement between the metric’s predictions and the subjec-
tive ratings. Some caution must be used when interpreting
these results as some of the differences between correlations
are not very significant. However, the trend is the same for
all three data sets, which indicates that face segmentation
is useful for augmenting the predictions of quality metrics.
The fact that giving lower weights to the faces from the anal-
ysis generally leads to a a reduced prediction performance
also supports this conclusion. As expected, the improve-
ment is most noticeable for the scenes where faces cover a
substantial part of the frame. Segmentation is least benefi-
cial for sequences in which the faces are quite small and the
distortions in the background introduced by some test con-
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Fig. 4. Prediction performance with and without segmen-
tation. Correlations are shown for the metrics applied uni-
formly across the full frame (gray bars), with an emphasis
on the areas resulting from face segmentation (black bars),
and the complementary emphasis (white bars).

ditions are more annoying to viewers than in other regions
(as is the case with data set 2).

5. CONCLUSIONS

We presented a full-reference and a no-reference percep-
tual quality metric that account for visual attention usingse-
mantic segmentation. The advantages of segmentation sup-
port were demonstrated with test sequences showing human
faces, resulting in better agreement of the predictions of our
perceptual quality metrics with subjective ratings.

Obviously, face segmentation alone is not sufficient for
improving the accuracy of metric predictions in all cases,
but the results show that it is an important aspect. Our cur-
rent research aims to generalize the proposed segmentation-
driven quality metrics to detect more features and objects of
interest [17] and to include object tracking [18].
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