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Efficient multi-target visual tracking
using Random Finite Sets

Emilio Maggio, Murtaza Taj, Andrea Cavallaro

Abstract—We propose a filtering framework for multi-target ~ the detections). A target may fail to generate an obsenvatio
tracking that is based on the Probability Hypothesis Densy whenoccludedan additional observation may be generated by
(PHD) filter and data association using graph matching. This | ter. and observations from actual targets may be corrupted

framework can be combined with any object detectors that . . . . .
generate positional and dimensional information of object of by noiseg thus affecting the state estimator. A multiple object

interest. The PHD filter compensates for missing detectionand ~ tracker must also account for targeteractionsand for the
removes noise and clutter. Moreover, this filter reduces thgrowth  time-varying number of targets in the scene by modeling thei
in complexity with the number of targets from exponential pirth (when a new target appears in the scene or is a spawn
to linear by propagating the first-order moment of the multi- from another target, such as a person stepping out of a car)

target posterior, instead of the full posterior. In order to account . . .
for the nature of the PHD propagation, we propose a novel and theirdeath Although the complete modeling of the multi-

particle resampling strategy and we adapt the dynamic and target problem is possible, its computational cost inéjta
observation models to cope with varying object scales. The grows exponentially with the number of targets.

proposed resampling strategy allows us to use the PHD filter

when a priori knowledge of the scene is not available. Morear,

the dynamic and observation models are not limited to the PHD A. Prior work

filter and can be applied to any Bayesian tracker that can hante . . . . .
State Dependent Variances (SDV). Extensive experimentagsults Bayesian recursion is a popular approach to filter noisy
on a large standard video surveillance dataset using a stamdd Observations in single-target tracking [1], [2], [3]. Thays
evaluation protocol show that the proposed filtering framevork filter first predicts the target state based on a dynamical
improves the accuracy of the tracker, especially in clutteed model and then updates the resulting density using the newly
scenes. available observation. Two algorithms implementing thas r

Index Terms—Video surveillance, clutter, tracking, multi- cursion are the Kalman Filter [4] and the Particle Filter

target, PHD filter, Monte Carlo methods. (PF) [5]. Multi-target tracking requires the extension bése
algorithms to cope with target birth and target death, etutt
|. INTRODUCTION and missing observations (Tab. 1). Although the multi-&drg

e can be seen as a concatenation of single-target statds
eled as a random variable [6], Bayes multi-target fiipri
IS computationally intensive due to the increase of theestat
dimensionality with the number of targets. To alleviatesthi
roblem several approaches have been proposed, as ddscribe
elow.

One solution is to model the multi-target problem in the
single-target state by propagating a mixture of singlgetar

dfs approximated by particles [7]. When a target appears in
t%

The growth of adoption of video surveillance systems h%at
been recently driven by hardware advances, such as ca
miniaturization, digitization and increased availalildf low-
cost data storage. However, the opportunities offered by-au
mated video surveillance are not yet exploited due to thie la
of accurate and efficient algorithms for data-mining, cahte
retrieval, event detection and behavior analysis. Theaextr
tion of high-level information from surveillance video maj
relies on the analysis of lower level video data like objec
and their trajectories, which are generated by multi-targ
trackers. While reliable tracking is possible under caistd
conditions, the problem of tracking in a generic unconsgdi
scenario (for example in a dense scene with uncontroll
illumination) is still unsolved.

The multi-target visual tracking problem can be decompos

e scene, a hew component of the mixture is initialized and
en propagated independently. The birth event is govenged
heuristics and it is not included in the filtering frameworke
8Iume of the multi-target state sampled by PF can be reduced
y assuming that the targets do not appear simultaneoudly an
Qé{ modeling the birth as a Poisson process [8]. To reduce the
into two main tasks, namely the detection of the objec é)mputatlonal cost, Markov Chaln_Monte Carlq methods can
of interests in each frame and the association of uniqg & used to better sample the multi-target density [9]. i
identities to the detections over time. The major challeimge Although the above-mentioned approaches make the multi-
the estimation of the number of targets and their positidhas target problem tractable, they do not account for cluttet an

the estimate is based on a set of uncertain observations (f&iSSiNg observations. An attempt to alleviate these litioitss
is presented in [10], but in this case the number of visible

E. Maggio, M. Taj and A. Cavallaro are with the Multimedia avidion targets is assumed to be known and fixed. Jump Markov
Group - Queen Mary, University of London, United Kingdom, E4S, UK Systems (JMS) approximated by PF have also been used to
e-mail: {emilio.maggio, murtaza.taj, andrea.cavallg@@elec.gmul.ac.uk. The model the varvina number of targets in the scene. clutter and
authors acknowledge the support of the UK Engineering aydiPd Sciences TuE y g g ) :
Research Council (EPSRC), under grant EP/D033772/1. missing detections [11], [12]. A JIMS models the dependencie
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. . . . . TABLE |
n the_njultl-t_arget state eVOlUt'_On thus gllowmg the des_ﬂj_ MODELING CAPABILITIES OF MULTI-TARGET TRACKING ALGORITHMS.
an efficient importance sampling function for PF. A similar MD: MissSINGDETECTIONS PF: PARTICLE FILTER; MCMC: MARKOV

path is followed in [13] where the marginal associatjots ~ CHAIN MONTEF%BR:;?UJS&%&“T":nggg&ﬁgi}fﬁﬁspmpb'NT
of the Joint Probability Data Association Filter (JPDAF)

are sampled using PF. The approach is less complex thamref. Algorithm Modeling capabilities
sampling the full multi-target state, as filtering is apglie - I HB'”_ht, C'Klﬁef '\IQID
. P | mixture euristic (o] (o]
to independent association hypothesgs pruned by a gatings Muli-target Condensafio One af a fime|  No No
procedure. Recently, Rao-Blackwellization (RB) has besadu 9 Multi-target MCMC-PF No No No
to reduce the computational cost [14]. The RB multi-targgt [10] | Multi-target Condensation No Yes | Yes
filter integrates the state propagation in closed form, evhill 11 JMS anc' PF One atatime| Yes | Yes
Monte Carlo integration is used for data association. Thef= JWS and P One spawn o o
onte 0 Integ lon. e JPDAF and PF Yes Yes | Yes
data association problem can also be modeled using grapiz Rao-Blackwellized-PF Yes Yes Yes
theory [16]. The graph structure accounts for target bitgath 15 Particle PHD filter Yes Yes | Yes
and missing detections, but a pre-filtering step is necgdsar 1° Graph matching Yes No | Yes
remove spatial noise and clutter.
A general Bayesian framework for multi-target tracking T Fifer noise and lutter | | Ocelusion handiing !
makes use of Finite Set Statistics (FISS) [17]. This frantéwo dObje_ct Z PHD filter H Ly
. . . T o i
considers the multi-target state as a single meta-targét & “ " |1 || Fao s[> Femmm]l> el i
. . : usteri N iati :
the observations as a single set of measurements of ° i | ¥ - ;

meta-sensor [15]. In this case, the multi-target state can _ e i
represented by a Random Finite Set (RFS), whose Bayesi@ 1. Multiple target tracking scheme based on objectatiete and on
propagation is similar to that of the single-target casewHo Particle PHD filtering. The PHD filter removes spatio-tengbanoise from
ever, the dimensionality of the target state still grOWShWitthe observations before the tracker performs data asutiat
the number of targets. This means that the approximation of
the RFS with Monte Carlo sampling requires a number of
samples that grows exponentially, thus making the propadgain contribution is the adaptation of a filter based on Ramdo
tion of the full posterior impractical. A less computatidiga Finite Sets to real-world visual tracking scenarios. These
intensive alternative is to propagate the Probability Higpsis adaptations are not straightforward as, unlike conveation
Density (PHD) (i.e., the first-order moment of the multiger applications of the PHD filter, we have to account for non—
posterior) [17]. The integrals of the PHD recursion canesithpunctual observations like those produced by video object
have an exact solution by assuming the PHD to be a mixtufetectors. Compared to our preliminary work in [28], we
of Gaussians (GM-PHD) [18] or can be approximated witAresent here a novel resampling strategy, enhanced dynamic
the samples generated by a Sequential Monte Carlo (SM@)d observation models, and an evaluation on a larger datase
method (Particle-PHD) [15]. As the dimensionality of theH Unlike the single-target particle filter, the multi-targeHD
is that of the single-target state, efficient sampling rezpia filter generates particles with two different purposes:t¢)
number of particles that is proportional to the expectedimerm Propagate the state of existing targets and (ii) to model
of targets, thus leading to linear complexity. the birth of new ones. The proposed multi-stage resampling
The cost for the lower complexity is the lack of informatiorptrategy accounts for the different nature of the partieled,
on the identity of the targets. For Particle-PHD a clustgrifcompared to the multinomial strategy used in [28], improves
step is necessary to associate the peaks of the PHD wifig quality of the Monte Carlo estimation from a tracking
target identities [19], [20]. Data association for the GMEP Perspective. As for the dynamic and observation models, we
is easier as the identity can be associated directly witlh ea¢se State Dependent Variances (SDV) to account for the ize o
Gaussian [21], [18]. However, these methods are limited me targets. These models are not limited to the PHD reaursio
the linearity and Gaussianity assumptions on the tramsitia and can be implemented in any Bayesian recursive algorithms
measurement models. Recently, Jump Markov Models hadfiat can handle SDV.
been used to extend GM-PHD to maneuvering targets [22],We incorporate the PHD filter in an end-to-end flexible
[23]. Filtering techniques based on the Particle PHD haembetracking framework that can deal with any detectors thatgen
tested on synthetic data [15], [24], 3D sonar data [25],Uieat ate a set of observations representing the position andzee s
point filtering [26], and groups-of-humans detection [27]of the targets. First, clutter and spatial noise are filtdrngthe
However, as no data association is performed [15], [24]),[2particle PHD filter. Next, clustering is used on the samples o
[27] nor the target size is estimated [25], none of the abotiee PHD to detect filtered target positions. Finally, thestdu
approaches can be applied to multi-target visual tracking. centers are processed by a data association algorithm based
the maximum path cover of a bi-partitioned graph. Figure 1
o shows the block diagram of the proposed tracking framework.
B. Contribution We demonstrate the multi-target framework using two déffer
In this paper we propose a complete multi-target visudktectors, one based on background subtraction [29] and one
tracking framework based on the PHD filter that addresses th&sed on Adaboost classifiers [30], and we objectively exalu
problems of clutter, spatial noise and missing detections. the results on a large outdoor surveillance dataset cangain
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more than 1 hour and 20 minutes of annotated survelllar\%ere{wg)} are the weights associated with the particles

videos (the CLEAR-2007 dataset). and are defired as
The paper is organized as follows. Section Il describes the @
Particle PHD filter with the dynamic model, the resampling @ _ by |2ue)
. . . . wy X ————— 1=1,..., L. (6)
strategy and the particle clustering. Section Il deswitiee q;c(ng)lzl;k)

data association method. In Sec. IV we show the results on

surveillance and face tracking scenarios. In Sec. V we dréi-) is the importance density function defined as the density
conclusions. that generated the current set of particles.

Let us assume thapy_j,_1(zr—1]21:6-1) IS appro-
Il. FILTERING DETECTIONS WITH THEPARTICLE PHD ximated by tLhe set of particles and associated weights
Let us approximate the target area in the image plane wi tw,@l,x,(jzl ~, as in (5). By substituting this approxima-
aw x h rectangle centered 44!, y(?)). Let the single target tion in (3) and by applying importance sampling and (4),
state at timek bexy, = (y&),y&),yﬁ),yﬁ),wmk,hzk) € E,, we obtain a recursion to propagate the particles and their
r\1/v0eights [5]. The filters, based on Monte Carlo sampling and

L(1) (2)
whereys, andg;, are the speed components of the target acursive Bayes equations, are known as Particle Filters.

E is the state space. Finally, let the single-target obsenvat
Z2p = ygi),yg?, wzk,hz,c) € E, in the observation spack,

be a rectangle generatéd by an object detector (e.g., a ehdfg Multi-target recursive Bayes filtering with RFS

detector or a face detector). In order to extend the single-target Bayes framework to
multiple targets, let us define the multi-target statg, and
A. Single-target recursive Bayes filtering the multi-target state measuremefit, as the finite collection
The single-target tracking problem can be modeled usifj the states and observations of each targed/Ifk) is the
the state and the measurement equations [5] number of targets in the scene at tifethen the multi-target
state, X}, is the set
ry = fi(vp—1,1%), (1)
X = s TR € F(E,). 7
and k {ﬂCk,l fﬂk,M(k)} ( s) (7)
2k = gr(Tk, Vi), (2) The multi-target measuremerff;, is the set
wheref;, and g, are non-linear, time-varying functions; and Zi=A{2u1,2enm) ) € F(Eo) (8)

{nk}r=1,.. and {v;}r=1,.. are assumed to be independent

and identically distributed stochastic processes. The gba and is formed by theN(k) observations. Note that some
tracking is to estimatey,x(zx|z1.), the pdf of the object Of these observations may be due to clutté(F) is the
being in statez;, given all the observations, up to time collection of all the finite subsets df.

k, based on (1) and on (2). The estimation is performed The uncertainty in the state and measurement is introduced
recursively in two steps, namely prediction and update. Ti¥ modeling the multi-target state and the multi-target mea

prediction stepuses the dynamic model defined in (1) to obtaifurement using two Random Finite Sets (RFS). £gte the
the priorpdf as RFS associated with the multi-target state:

pk\k—l(zkplzkfl) = = Sk (Xk—l) U By (Xk—l) U, (9)

3
= /fk‘k_l(:z:k|:z:k,1)pk_1‘k_1(xk,1|z1:k,1)dxk,1, ®) where Sy, (X;—1) denotes the RFS of survived targets, while
. . . By, (Xi—1) is the RFS of targets spawned from the previous
With pg_1)k—1(¥k—1]21:6-1) known from the previous itera- get of targetsX,_;, and I';, is the RFS of the new-born

tion and the transition densityy, ;i (zx|zx—1) determined targets [15]. The RFS, associated with the measurement
by (1). Theupdate stepuses the Bayes’ rule once the obsels defined as

vation z;, is available, so that O = 0y (X3) UK, (10)

Prlk(Tr]21:0) = gk(zk|xk)pk|kfl(xk|zl'k_lzl , (4) where®; (X;) is the RFS modeling the measurements gen-
J gr(zelar)prin—r (@rlz1—1)de erated by the target&,, and K, models clutter and false

where g, (zr|zx) is determined by (2). When (1) and (2) arelarms.

linear and the stochastic processes are Gaussian, theimcur Similarly to the single-target case, the dynamics of

has a closed form solution known as Kalman filter [4]. A5, are described by the multi-target transition density

more generic approximation can be obtained using Monfg, ,(X;|X;_1), while ; is described by the multi-target

Carlo estimation [5]. In this case the densitigs; (zx|21.x) are likelihood gx(Zx|X.). The recursive equations equivalent

approximated WithLa sum df Dirac ¢ functions (the particles) to (3) and (4) are

inf ()
centered m{xk }i:1 as Pt (X Zir) =
L
g i Frre—1 (KXol X—1)Pr—1jp—1 (Xp—11Z1:p—1) p(d X jo—1)
pk|k($k|21;k) ~ Zw,(c)é (a:k — x;)) , (5) / | | .
=1
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and wherep/(z) is the missing detection probabilityy, . (z) =

91 (Ze| X )Prjo—1 (Xk| Z1:6—1) (I—pam(x))gr(z|z), andgr(z|x) is the single-target likelihood
ik (Xk| Z1k) = T 96 (Zi X k) prip—s (Xk| Zrop1)u(dX ) defining the probability that is generated by a target with

' state z; (f,g9) = [ f(z)g(z)dz, and ki(.) is the clutter

wherep is an appropriate dominating measureB(F;) (for intensity.
a detailed description of RFSs, set integral and formutstio NO generic closed form solution exists for the integral
of ., please refer to [17] and [15]). Although a Monte Carl®f (14) and (16). Under the assumptions of Gaussianity and
approximation of this recursion is possible [15], the numbénearity one can obtain a filter that in principle is similar
of particles required is exponentially related to the numbthe Kalman filter. This filter is known as the Gaussian Mixture
of targets in the scene. For this reason, an approximatiBhiD filter (GM-PHD) [21]. However, given the limitations on
is necessary to make the problem computationally tractablee dynamic and observation models (Sec. II-E), we prefer th
To this extent Mahler proposes to propagate the first-orddonte Carlo implementation of the PHD recursion, known as
moment of the multi-target posterior instead of the posterithe Particle PHD filter.
itself [17]. The resulting filter is known as the Probability

Hypothesis Density (PHD) filter. D. The Particle PHD filter

C. The PHD filter A numerical solution for the integrals in (14) and (16) is

] o ] obtained using a Sequential Monte Carlo method that approxi
The PHD is a function in the single-target state space Whosg e the PHD with a (large) set of weighted random samples

peaks identify the likely position of the targets. The PHDgee (5)). A more detailed explanation of the procedure is
Dz(z), is the first-order moment of a RFS, and it is a g qiable in [15].

function onE,. The property of the PHD is that for any region
R C E,

Ly—1

Given the set{w,iizl,x,(fll}‘ ) of Ly_, particles and
E[EN R[] = / Da(z)dz, (13) associated weights approximating the PHD at time 1 as

R Lk71 . .

where || is used to denote the cardinality of a set. In Di—1je-1(z) = Y “’18215(17—:0;’21), 17)
practice, (13) means that by integrating the PHD on any regio i=1

E c;%‘ the state space we obtain the expected number of targgts approximation of the predicted PHIBy;,_;(z), with

n . . . (i) (i Lk _1+Jk . . .

If we denoteDy(x) as the PHD at timek associated Weighted parUcIe%w,(c),x,i)}i:l is obtained by substi-
with the multi-target posterior densityy,,,(Xx|Z1.1), then tuting (17) into (14) and then applying separately impocean
the Bayesian iterative prediction and updateZofj,(x) is sampling to both terms on the r.h.s.. In practice, first wevdra
known as the PHD filter. The recursion of the PHD filtef.,_; samples from the importance functim(.|x§£l,zk)

is based on three assumption®: the targets evolve andto propagate the tracking hypotheses from the samples at
generate measurements independerily; the clutter RFS, time & — 1; we then draw.J, samples from the new-born
K}, is Poisson-distributed an@ii) the predicted multi-target importance functiomy(.|Z;) to model the state hypotheses of
RFS is Poisson-distributed. While the first two assumptiom&w targets appearing in the scene. This last set also déiimes
are common to most Bayesian multi-target trackers ([6]],[1Qconfiguration of the particles at initialization. We willsgiuss
[11], [13], [14]), the third is specific to the derivation dig the choice of;k(.|x,(jzl, Zy) andpg (.| Z) in Section II-E. The

PHD update operator. _ values of the Weightzsizl(j‘)ki1 are computed as
The PHD predictionis defined as

on (202wl
Dijp—1(7) :/¢k\k71($7C)Dkfl\kA(OdC+%(f€)a 14 PR, 7). i=1,.., Lk
Whlk—1 = NoNE :
(2, ) i=Lp1+1,..., L1+ Jx

where~,(.) is the intensity function of the new target birth W
RFS (i.e., the integral ofy,(.) over a regionR gives the A (18)
expected number of new objects per frame appearing)in nce the new set of observations is available, by substitut-
brje—1(z, &) is the analogue of the state transition probablh%g the approximation ofD,;_; (z) into (16), the weights

in the single-target case: {~(i) }L,Hﬂk
w
rjh—1(7, &) = exjr—1(8) frjp—1(2]) + Brjp—1(x[€), (15) k1
. . : . - (4)
where ey ,—1(§) is the probability that the target still exists  _() - (4) Vr,=(T,) ~ (3)
at time k, and 8,1 (.|¢) is the intensity of the RFS that a O = |pu(T)7) + Z ki (2) + Cr(2) 1> (19)
target is spawned from the stage #En

are updated according to

1=

The PHD updateis defined as whereCy,(z) = Zfﬁfﬁjk wk,z(f;(f))@g,l,l-
Dyj(z) = The Particle PHD filter was originally designed to track
targets generating punctual observations (radar tradiinp.
pum () + Z Vi (@) ] Dy (@), (16) 7o deal with targets from videos, we have to adapt the dynamic
ez, #k(2) + (Wr,z: Dijr—1) and the observation models to account for the size of the
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target on the image plane. In the following we describe hoas
to account for the two additional dimensions, the width and { D 0Ox3 } ith D { 1 0 0 }
, Wi =

the height of a target, in the observation. Oowa Do 0 0 1
and 0,,x.,, is then x m zero matrix.X(x) is a diagonal
E. Dynamic and observation models covariance matrix defined as
__In_order to comput_e the PHD filter re_zcursio_n, the propa- diag(S(x)) = [ovm) w,, Oy(h) Py Gy W Oy h/m:| .
bilistic model needs information regarding object dynasnic 2 2

and sensor noise. The information contained in the dynaniote that the SDV models described in (20) and (21) do
and observation models is used by the PHD filter to classifipt allow closed-form solution of the PHD filter recursive
as clutter, detections not fitting these priors. equations (see (14) and (16)). They require an algorithm
The magnitude of the motion of an object in the image plargich as the Particle PHD that can handle generalized state
depends on the distance of the object from the camera. Sisp@ce models. In order to use GM-PHD [18] with SVD, an
acceleration and scale variations in the camera far-fiedd @pproximation based on the Extended Kalman filter or on
usually smaller than those in the near-field, we model thie stéhe Unscented transformation is necessary [21]. The other
transition f ;1 (zx|zr—1) as a first-order Gaussian dynamidunctions that define the PHD recursion are defined below.
with State Dependent Variances (SDV). This model assumedn the absence of any prior knowledge about the scene,
that each target has constant velocity between consecutN@ assume that the missing detection probability,z), the
time steps and acceleration and scale changes approximgtgdability of survival e 1 (x), and the birth intensity. (x)
by random processes with standard deviations proportionalare constant over. To this extent, we decomposg (z) as

the object size at timé — 1, i.e. sb(z), wheres is the average birth events per frame aid)
o is the probability density of a birth that we take to be unifor
—_————— né” on the state space. Similarly, we define the clutter intgnsit
A 02 0o By 02 e ki (z) asre(z), and we assume the clutter density) to be
zp=1 02 A 02 |xp—1+ | Bz 02 Eo 1o uniform over the observation space.
Oz 02 Ip 02 Bs n’gh) In order to complete the definition of the Particle PHD filter
n

recursion we need to design the importance sampling fumgtio

. (20) for the Monte Carlo approximation. On the one haig, ;
with old particles are propagated, as in CONDENSATION [1],
= [ 1T } B —w { = o } according to the dynamics (i.eg(.|) o frx_1(.[.)). On
0o 1|7t TeerlT 0] the other hand, drawing thd, new-born particles is not
- straightforward as the tracker should be able to reinigali
By = ha,_, [ 0 5 ] , and Bz = { Tz, 0 } , after an unexpected lost track or target occlusion. Wheor pri
U 0 Tha,,, knowledge on the scene is available, the samples could be

where0,, and I,, are then x n zero and identity matrices, drawn from a localizedy (.). However, no target birth would
and {”z(cl)}-{”gf)}’ {nEj")} and {ngﬂ} are independent white be possible in stat_e regions with low(.), as no particles
Gaussian noises with standard deviatiens o, ,,,.) and Would be sampled in these areas. When no prior knowledge
oy respectively.{n(l)} and {ngf)} model the acceleration 1S ayallable, drawing from a unlform non-mformatw@.(.)

of the target, Whi|e{nkw)} and {n;h)} model the variation in (35 N the one we usg) would require too many partlclgs to
size.T — 1 is the interval between two consecutive steps obtain a dense sampling on a 6D state space. To avoid this

and k), which we take to be constant when the frame rate l;?go_ttalzm, \I/ve assume dﬂ:ﬁt the birth of at t?t[?_]et happ dens I?ha
constant. For simplicity, no spawning of targets is congde imited volume aroun € measurements, thus we draw the

in the dynamic model. {f new-born partu;lehs frogm aHmlxture OfdG?USSIr?n§ centered on
The observation model is derived from the following consid"® components of the sef.. Hence, we define the importance

erations: when an object is partially detected (e.g., tmbosampllng function for new-born targets (.| Z;) as
of a person is detected while her/his head is not detected), 2| Z.) = 1 N(z:[2.0.0]. 5 (2 22
the magnitude of the error is dependent on the object size. Pr(|Zy) N (k) Z (;12,0,0], Za(2), (22)
Moreover, the error on the estimation of the target size isdw : . .
o : S _ where the elements of th& x 6 diagonal covariance matrix
the error on the estimation of the centroid. This is equivale . .
) - . %, are proportional tav, andh., and are defined as
to assuming that the amount of noise on the observations 15 _
proportional to the size of the targets, and that the standar  diag(Xs(2)) = [0hy Wz, 04y W, 04y b,y -
deviation of the noise on the centroid is half that on the.Sipe Oy @ he Ob Wz, oy R
this extent we define the single-target likelihood as a GaossAlthough drawing new-born particles from (22) allows dense
SDV model, such that sampling around regions where a birth is possible, the darti
PHD recursion is also influenced by the resampling strategy
= ;Cr, X 21 C
g (2]2) = N(; C, 5(x)), (21) used to select the most promising hypotheses. In the next
whereN (z; Cz, ¥(z)) is a Gaussian function evaluated4n section we discuss the resampling issues for the Partic® PH
centered iC'z and with covariance matriX(z). C is defined filter that accounts for the different nature of the parscle

z2€Zy,
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F Resampling Before resampling:
At each iteration,/;, new particles are added to the dlgl_ {@,ﬁ“,@@}“"w tage 1
particles. To limit the growth of the number of particles, ¢ =t

resampling step is performed after the update step. Ifickss
multinomial resampling is applied ([15], [5]), thdn, particles
are resampled with probabilities proportional to their gr#s  aster resampling:

() o ()| R Y 3 | 2 Stage 1
from {Wk [ My, T, } , Where My, is the total mass. {w“) w(i)}Lk 2 age
This resampling procéaure gives greater chance to trackil FE i L

hypotheses with higher likelihood to propagate by prunin I,

from the set unlikely hypotheses. . . .
. . Fig. 2. Schema of the multi-stage resampling strategy ferttitee-stages
Ly, is usually chosen to keep the number of particles p@cigse. TheJ,, particles modeling the birth of new targets are resampled

target,p, constant. At each time step, a ndwy is computed separately from the older ones for a fixed number of time steps
so thatLy = pMy,. Hence the computational cost of the

algorithm growslinearly with the number of targets in the Algorithm 1 Multi-stage multinomial resampling
Ly,

scene. After resampling, the weights éb,(j),xgj)}. are {a}(i) i(i)}Lk,ﬁJk - {w“) x(i)}Lk

normalized to preserve the total mass. = L PR i
Although multinomial resampling is appropriate for a;f if ksz_gtoheqﬁ N

single-target Particle Filter, this strategy poses a setf 3. gise ik > 1 then

problems when applied to the PHD filter. The prediction stagé  Sx, = Sn,—1 + Jk

of the PHD (see (14)) generates two different sets of pagicl 5°  Compute the stage madds, = EL-S:H @j,

(i) the Lj_; particles propagated from the previous steps t6:  Compute the number of particlés = Ms, p

L NS
model the state (e)volution of existing targets, with weights:  Multinomially ~ resample {@fj) /Msl,fgﬁ} ' to  get
7 =1
S1

i=1

proportional tow,’,, and (i) the remainingJ; particles @ . @

modeling the birth of new targets, with weights proportiona {wk =1/Ms,, }_1

to the birth intensityy (.). 8  forj=2:Nsdo X S »
For multi-dimensional state spaces where the birth event Compute the stage masds, = Ziésjfﬁlwz

is sparse (i.e., |0V’Wk(-)), the predicted Weighfs’;(f)k_l of the 10: AComputg_ thg number of particlesS; Sj—1 +
new-born particles may be several orders of magnitude small max{Ms,p, Sj = Sj-1} _ s

than the weights of the propagated particles. In this casthea 11 Multinomially resample{w,?)/MSj ' i’g) } :s 0 gt
probability of resampling is proportional tb,(f) and thereby o S i=8; 141

to @,(j‘)k_l, it is possible that none of the new-born particles {‘“k =1/Ms;, }Z_:gHH

is resampled and propagated to the next step. Although @#  end for
approximation of the PHD is still asymptotically corredigt 13j é’@ ngjr g
. . . : 1 =01 2
birth of a new target also depends on comblr_latorlal fapto&gr,: S; =81 Vi=2,...Ns—1
Furthermore, when one or a few new-born particles are finaflg: end if
propagated, the PHD is not densely sampled around the new-

born target, thus reducing the quality of the spatial fittgri

effect. Increasing the number of particles per targets not \yith a mixture of Gaussians centered on the observations
effective as the value should be very large and comparale._l,%e (22)), we can tak, = N (k)-r, wherer is the number of
with 1/7,(.). _ ) new-born particles per observation. The overall comportaii
~To overcome this problem, we construct a multi-stag&st of the algorithm grows linearly with the number of tasge
pipeline that resample_zs the_ new-born particles mdepeithdenXk, and linearly with the number of observatiofs.
from the_ others. The idea is to §eparately apply .mult|n0m|al In order to compare the proposed resampling strategy with
res_ampllng to the new.-born particles b_y segregating them ft‘Ple standard multinomial resampling, we analyze the $§tis
a fixed numberN, of time steps. In this way we allow the o¢ 1ho gelay in the response of the filter produced by the
weights to grow till they reach the same magnitude as thogg iting Monte Carlo approximations. To ensure that the
assqmated with pamc_les modelln_g older targets. Thechep_ difference is generated only by the resampling, we produce
multi-stage multinomial resampling strategy for the peeti synthetic scenario where the targets move according to the

PHD filter is summe}rized in Algorithm 1: FiQUfe 2 shows 8Mhodel described in Sec. II-E. We fix one target in the center
example of the multi-stage resampling pipeline wién=3. ¢ the scene and then we generate new targets uniformly

distributed over the state space and according to a Poisson

The multi-stage multinomial resampling preserves thel t0igy ;a5 The two components of the speed of the new targets
mass of whole set of particle®/},; (this is a requirement of ;. uniformly drawn over the ranggsda; ;,w., 40, ;o w. |

the PHD filter), as it preserves the total mass of the pasticlg,q [~40y 2 b, 40, 2 h] respectively. This also produces

in each stage (see Step 7~?;I;ld Step 11 of Algorithm 1). AS Weqets in regions of the state space with low density of new-
model proposal density; (Ik |Zk) of the new-born particles porn particles (see (22)). We collect the measureméhts
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TABLE Il
COMPARISON OF FILTERING RESPONSE STATISTICS BETWEEN THE
STANDARD MULTINOMIAL (MUL) RESAMPLING AND THE PROPOSED
(PROP) MULTI-STAGE MULTINOMIAL RESAMPLING

Delay Never detected %
Avg | Stddev| 0-25| 0-.05[ .05-.1] .1-.15] .15-2
Mul | 11.2 10.5 372 | 238 | 294 | 456 | 50.0
Prop | 5.1 3.8 14.8 9.9 8.7 16.2 | 275

for 1000 synthetic targets. We then give the measureme _
as input to the approximated PHD recursions using the t#=
resampling strategies. Table Il shows the statistics edlad _ _ _— ) .
he time delav in validating the new-born targets (ex rléSSFl-g' 3. Sample tracking results using multinomial and rstiige multino-
_t € y g g p ﬁ_\lal resampling (CLEAR-2007 dataset, sequence 102a03efdl 354, 1359
in frames), and the percentage of never—detected targ#ts vihd 1385). The multinomial resampling (top row) delays thitialization
respect to the speed ranges expressed as ratios between dige track and introduces an error in the state estimatios td the low
d obi . iah . . d with i umber of available samples. These behaviors are corréstéde proposed
and object size. Hig er_ratl_os are assoc_lgte with regi NS fliti-stage resampling strategy (bottom row).
the state space where filtering is more difficult as the densit
of sampled particles (see (22)) is lower. Also, faster ta&rgee
more likely to leave the scene before the PHD filter managprss
to produce a target birth. The standard deviation of theifiite
delay (Tab. Il) shows that the multi-stage resampling sthat
has a beneficial effect in stabilizing the behavior of theeffilt
(lower standard deviation). The higher average delay predu [
by multinomial resampling is due to those situations whef =~
none of the new-born particles is propagated to the nextti
step. This is also confirmed by the higher percentage of revé
detected targets produced by multinomial resampling. Fig. 4. Visualization of the particles approximating the IPHbefore
A comparison between the proposed resampling strate §ampling. step) on the frame at the Ieft_ when the vehiclestfze targets
and the standard multinomial resampling is shown in Fig. §¢¢ Poxes: input detections; green boxes: cluster cgnters
The top row shows a delayed target birth (box) caused by
the standard multinomial resampling. In this situationnske
sampling is made more difficult by the fast motion of th
vehicle. Note that 30 frames of consecutive coherent detect ~ . . . = :
8Hg|nal set of detection&y, as the elements of, are filtered

are not enough to validate the target. Furthermore, wh . . :
the first particles are resampled and propagated, the ﬁtt;eri'n space and time by the PHD and include an estimate of the

result is poor due to the low number of samples availablg‘.rget velocity. Furt_her i.nformation is also carried on by t
Figure 3, bottom row, shows how the proposed resamplitﬁ tal massMj,y, estimating the expected number of targets
strategy improves the quality of the PHD approximation whef] the scene. Howevenl,, may be composed of several
new targets appear in the scene. The proposed multi-st§ ters of particles with mass smaller tharand therefore

multinomial resampling that uses the same birth intensili e real n_umber of c_Iuste_rs may be larger thdp;.
validates the track in 4 frames only, despite the motion of 10 @void underestimating the number of clusters, we pro-
the target. pose a top-down procedure based on Gaussian Mixture Models

(GMM) that accounts for the new set of particles associated
_ _ with target births, and updates the cluster parameters laypme
G. Particle clustering of Expectation Maximization (EM). The intuitive reason for
After the resampling steLp, the PHD is represented byusing GMM is that both state dynamics and observation
. i) (G ' : ; dels are Gaussian, and therefore also the clusters of par-
set of artcles,{ (), ()} ' , defined in the single-target ™ © T S
part Wk L I I e 9 ticles tend to be Gaussian-distributed. The procedure svork

state space. An example of PHD approximated by partlclesal follows: first, the set of clusters obtained at the previou

Shﬁwln n F'g' ﬁ Thes%;aks of3the I.DHD arehon the Setecftg p,k — 1, is augmented with new clusters initialized on
venicles and the massly, ~ 3 estimates the number oly,o ohservations to model candidate new-bom targets., Idext

targlt(e_ts. 'Lhe Ic;]cal mass ofl_tge p:jartt)lcles IS Iarger \(/jvhere.t gpothesis test is conducted to discard the new clusteratba
:\rla(t: '&g ‘ yltht ef‘]etf] aretva;l atfl y Co_nsecgt'veaaﬁt'osimilar to old ones. The parameters of the remaining clester
ote that although the Set of parlicles carries inform UL are optimized running EM on a set &f, = pgar My, parti-

the expected number of targets and their location in theescen o L
the PHD does not hold information about the identity of theles multinomially resampled frOf‘Ew;(f)/Mk\kw;(f)},_ [5].
targets. A clustering algorithm is required to detect thakse Resampling is performed to obtain particles with uniform
of the PHD. These peaks define the set of candidate statesghts and also to reduce the computational cost of the EM
X = {Zra1, -2y} Of the targets in the scene and areecursion. After convergence we discard small clustersh(wi

éhe input of the data association algorithm. The informmatio
carried on byXjy, is richer than the one carried on by the
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Algorithm 2 Particle clustering betweent; andz;_; as

@\ EF > o _ _ _ i
{€k17Zk7 {w,i)7wl(v)}. 1} - {Glka} 9(Zr, Tp—j) = log(N (Zg; G:ck,j,Zg(a:k,j))Pf; =1y - Ty,
. (23)
1: Multinomially  resample {W;ii)/Mk\mm;(j)}Lk to get WhereP, < 1 penalizes shorter trajectories; is defined
i=1 in (20), X,(x) is a diagonal matrix with

. . I
{wli) =1/ My, 3 =

2: V= € 7, initialize a new cluster{1/Ny, [z, 0,0], £, (=)} and add it to
On
3: V clustersc; = {z;,3;} € 6y compute hypothesis test thaj,_; ; € . . - .
01— is in the 99 percentile ofc;, and removec; from 6y if 3i| the and Ty is a gating threSh_O|d defined l?y the 99 percentile of
test is positive ) the Gaussian. An edge is added Wp if g(Zx,Zr—;) > 0.
4 t/;dd fh?‘_ ?'USfetf)f F@kol—ltantd, t(i obtaing,, run EM till convergence on Estimating the maximum path cover (i.e., the maximum sum of
e par ICES~O ainea at step . . .
5 Prune fromd), the small clusters withi, ; < S edges given the traclgng_ constraints) of the graph cormki_)o
6: Merge similar clusters (with the procedure defined in {2is obtaining t0 maximizing the likelihood over the set of edges (i.e.,
_ ?;k h ‘e _ g _ o correspondences) represented in the graph. To this end, we
’ ) reatfvt T:e_t]\; Cftqef iem‘%’“ according Xy = {Zki,7 = gnforce a bi-partitioning of the graph and solve the maxéimiz
ek Rl = M tion problem by means of the algorithm from Hopcroft and
Karp [32]. The complexity of this algorithm i©(n?-%), where

~nis the number of vertices if}.
mass below a threshold) as they are usually associated

with disappeared targets. Finally, we merge similar chsste
according to a criterion based on hypothesis testing [21].
Let us define the parameters of the GMM at tilas

diag(Xy(x)) = 1[040 W, 0, 50)We, 0y @ Ny ..
sy Og (2 ha, Og,wWg, a'g,hhm]

IV. EXPERIMENTAL RESULTS

In this section we report on tests of the proposed multigrg
tracking framework on real-world scenarios. In particular
Or = {mh,1, Th,1, Bhey1s - - s TN o> Th,Nog» 2k, N i 1o we assess the contribution of the Particle PHD filter and
] ) o ) ) of the dynamic and observation models with state-dependent
wherer; is a weight coefficient of the mixture;;.; is the \ariances on the tracking result. To test the flexibility loé t

cluster centery;,; is the covariance matrix andV. ;. is the  nronased framework we use two different detectors, namely a
number of clusters at timé. Given the cluster parametersch(,;lnge detector and a face detector.

9’6*8) at(.lj _Ll' the observationZ,, and the set of particles  The parameters used in the simulations are the same for
K2 K2

{Wk , T, } ’ , the clustering procedure that outputs the newall test sequenceand, unless otherwise stated, they are the
set of CMS}E}&% and the set of state&, is detailed in Same for the two detectors. The values of the parameters are
Algorithm 2. empirically chosen and a sensitivity analysis for thesaad®o
is given later in this section. The particle PHD filter uses
p = 2000 particles per target and = 500 particles per detec-
tion. The standard deviations of the dynamic model defining
To obtain a consistent identity of each target over tim@arget acceleration and scale changes afg;, = 0,2 =
we use an optimized data association procedure basedogn., = o,x = 0.04. The standard deviations of the Gaussian
graphs [16]. Although this algorithm does not account fasbservation noise aret, ., = o,mn = 0.15 for the change
clutter and spatial noise, it is less computationally istem detector and).1 for the face detector. Larger spatial noise is
than other probabilistic techniques (e.g., the Multi Hymses used in the change detector case as we have to cope with
Tracker [31]) and produces comparable or better resultk [1éhe errors related to merging and splitting of the blobs. The
This choice is motivated by the fact that we do not need tarth intensity parameter defining the number of new targets
handle clutter measurements and sensor noise at this stagpea frame iss = 0.005. The number of observations due to
they have been already treated by the PHD filter. clutter is set tor = 2.0 clutter points per frame. The missing
Let a cluster centef;, € X; be represented by a vertexdetection probability?,; = 0.05, and the survival probability
v(Zy) € Vj, of the graphG, whereV, is the set of vertices ey ,—; = 0.995. The new-born particles are spread around the
representing the targets at tinke The tentative associationsdetections witho,, ) = 0y, 2 = 0bw = o = 0.02 and
between candidate targets at different instants of time arg;u) = 0y, 52 = 0.05. The resampling strategy usa§ = 7
described by the gain associated with each edgé&'.imThe stages. The number of resampled particles for GMM cluggerin
graph is formed by iteratively creating new edges from the pgas = 500 per target. Clusters with weight lower than
old set of vertices{V},_,},=1..w, to the new set of vertices, S = 103 are discarded, whil&,; = 0.5 is used to accept the
Vi, associated with cluster centers of frameThe possible cluster centers as real targets. For data associationetith df
combinations of set of edges represent multiple track hthe graph i’ = 50 and means that the algorithm is capable
potheses, which account also for possible missing detectimf resolving occlusions for a maximum of 2 seconds with a
and occlusions (i.e., edges between two verticés,) and 25Hz frame rate. The parameters of the gain function of (23)
v(Zr—;), with j > 1). The final tracks are identified by theare: o, ;o) = 0, 2 = 0.075, 0, ;00 = 0,42 = 0.09,
best set of edges generated by the path cover efith the o4, = o4, = 0.15, P, = 0.5 for the change detector and
maximum gain. We define the gay(zx, Zx—,;) of the edge 0.9 for the face detector. The higher value Bf, used in the

IIl. DATA ASSOCIATION
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TABLE Il
COMPARATIVE RESULTS ONSDV DYNAMIC AND OBSERVATION MODELS
ON THE TWO TESTING SCENARIOBW (BROADWAY CHURCH) AND QW

PHD-MT vs MT (Score difference) - BW

(QUEENSWAY) FROM THE CLEAR-2007DATASET. EMODP
L EMODA|
OMOTP
BW QW COMOTA
SDV [ Linear | SDV | Linear
MODP Avg | 0.537 | 0.530 | 0.382] 0.377
Significance 5.55E-09 1.54E-02
Avg 0.444| 0.429 0.211| 0.153
MODA Significance 2.63E-04 7.33E-06
Avg | 0.544] 0.536 | 0.388] 0.381
MOTP
Significance 9.75E-08 3.37E-03
Avg | 0.436] 0.415 | 0.194] 0.128
MOTA —significance | 2.11E-06 T28E-06

Segment

) o PHD-MT vs MT (Score difference) - QW
face detector lowers the penalty on edges modeling missil
detections and occlusions. As we will see in the following

this facilitates track continuity when a face is occludedthy 7 auoor|
other objects in the scene. EMOTP
The main body of the tests is conducted on the CLEARos-——— I— L | E— I =

2007 dataset using@ange detectorThe dataset contair
sequences from two different surveillance scenarios, By |
Church (BW) and Queensway (QW).The videos have a fran

size of720x 480 pixels with a frame rate of 25Hz. The ground-

truth annotation is available fdR1354 frames (approximately °21

1 hour and 21 minutes of video), divided ins0 evaluation [IH[IH[IH [Iﬂ [l'H [I-H [Iﬂ ﬂﬂj” | JH
Segments_ o1 1 2 3 4 5 8 7 8 9 10 11 12 13 14 15 16 17 18 Avg

The detector used iS. a CQlOI’ _StatiStical change detectdr [Zifig. 5.  Difference of trackinsegrmeeghlt between the multgtetr tracker
followed by morphological filtering and connected compdnemith (PHD-MT) and without (MT) PHD filter. The bar plots shovhet
analysis. To facilitate the reproducibility of the expeeints, evaluation score difference for all the evaluation segsenthe two scenarios
the files containing the detector outpd;. are available at ?éjzzngv'\‘,ESRTzr?gﬂagftsajfgﬂgﬂr Egs(gﬁgi‘iwii 2cg:§g;e?géﬁmr
http://www.elec.gmul.ac.uk/staffinfo/andrea/PHD- M the segments of each scenario. Positive values corresmomerformance

The objective performance evaluation follows the VACEMmProvements achieved with the PHD filter.

CLEAR protocol [33], which uses four scores, namely Multi-

ple Object Detection Accuracy (MODA), Multiple Object De-

tection Precision (MODP), Multiple Object Tracking Accaya PHD filter to the tracking pipeline, we compare the multi-
(MOTA) and Multiple Object Tracking Precision (MOTP).target tracker based on the particle PHD filter (PHD-MT)
Unless otherwise stated the MOTP and MOTA values for eaelith the multi-target tracker (MT) where the data assoociati
scenario are the average over the evaluation segmentste@igldescribed in Sec. Il is performed directly ofy,. Figure 5

by the segment frame span. shows the difference in terms of evaluation scores between

Table Il shows the performance comparison between tRéID-MT and MT. The last set of bars in the two plots
SDV dynamic and observation models described in Sec. II-§hows the average results over the segments. It is possible
and linear models with fixed variances. Fixing the variancés notice that the filtering of clutter and noise consistentl
is equivalent to removing from (20) and (21) all referencegproves both accuracy and precision for all the evaluation
to target width,w, and height,h. The fixed values of the segments in both scenarios. In the video segments with highe
standard deviations are chosen as a compromise between Iégels of clutter and where tracking is more challenging, th
and small targetso(,y = 0,2 = 0, = o,m = 3 and performance improvement is larger. Similar consideration
Oy = 0,m = b). The tracker with SDV models is better incan be drawn by comparing the results of the two different
terms of both precision and accuracy. Also, the significarfce scenarios. More false-positive detections are generateted
the performance difference is always below f# validation change detector on QW; by removing these false positives, th
threshold. The compromise selected for the standard deviatPHD-MT obtains larger improvements in terms of evaluation
values is not appropriate near the extrema of the targee scatores than on BW (Fig. 5).
range. When a large object (i.€00 pixels wide) is partially ~ Sample results of the PHD-MT used to process the output
detected, the error associated with the observatiormay of the change detector are shown in Fig. 6. In this challeng-
be several times larger than the standard deviation. Similaing situation generated by a sudden change in illumination,
while an acceleration df pixels per frame may be appropriatealthough the target size accuracy is not perfect, the heavy
for a middle-size target, this value is large compared to theutter is filtered by PHD-MT (Fig. 6, second, third and fdurt
typical motion of a pedestrian located in the camera’s fdfi row). Furthermore, in cases when a target generates noisy

To quantify the change in performance when adding tlabservations, the spatial smoothing produced by the PHED filt
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Fig. 6. Comparison of tracking results between the mutgeatracker with o6
(PHD-MT) and without (MT) PHD filter. (a) Detections (colooded in red)
and PHD output (color-coded in green). Several false detectre filtered by -
the PHD (second, third and fourth row). (b) MT results. (C)IRMIT results.
False tracks due to clutter are removed by PHD-MT.
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facilitates data association preventing an identity dwin the ' T e
same target (Fig. 6, third row, the pedestrian in the cerfter ®g. 7. Sensitivity analysis on the parameters of the PHRrfildverage
the scene). evaluation scores on the Broadway Church (BW) scenario.

Figure 7 shows the accuracy and the precision scores when
we change the set-up of the PHD filter parameters. Each plot
was obtained by changing witbg, scale one parameter at aMultiple coherent and consecutive detections are necgssar
time while fixing the rest to values defined at the beginnirigcrease the mass to a level greater tdan For this reason,
of this section. It is interesting to observe that |argeam];hs when the clutter is not persistent, the PHD filter removeAst.
of tracking performance are associated with changes of th¢ntioned earlier, due to the trade-off between clutteroneh
observation and dynamic model configurations (see Fig.apd response time, the drawback of this filtering is a slower
for o,() and g,,()). Too large or too small noise variance§esponse in accepting the birth of a new target.
result in insufficient or excessive filtering and produce apdr In addition to the above, Fig. 8 shows how the combination
of tracking accuracy. Also, decreasing (i.e, the number of PHD filtering with the graph-based data association ig abl
of particles per estimated target) reduces the quality ef tko recover the identity of faces after a total occlusion:he t
filtering result as the approximation of the PHD propagatidhird and fourth row, although a face is occluded by another
becomes less accurate. The PHD filter is less sensitive person, data association successfully links the correpgn
variation of the other parameters. In the case of birth amdcks. Finally, the results of PHD-MT compared with MT
clutter parameterss(andr), low variability is associated with shows that two false tracks on the shirt of one of the targets
the fact that birth and clutter events are relatively spamse are removed by the PHD-MT only.
the state and observation spaces. When varyjiige average  To complete the analysis of the results, Fig. 9 shows two
number of clutter points per scan, the result is stable ungkamples offailure modalities of the particle PHD filter.
7 is grossly overestimated. Similarly, only a small impacfhe close-up images in Fig. 9, top row, show a first failure
is associated with variations of missing detectidh,) and modality. The change detector generates for the person in
survival (ex—1) probabilities. the far-field detections that are inconsistent over timeeseh

To demonstrate the flexibility and modularity of the prodetections are considered by the PHD filter as clutter and
posed multi-target framework, we show the results obtainéterefore eliminated. Figure 9, bottom row, shows a sample
when substituting the change detector withfaxe detec- result when one of the assumptions of the PHD filter is vialate
tor [30]. The dataset used in this section is available ébec. 1I-C), i.e., the targets generate dependent obsangat
ftp://motinas.elec.gmul.ac.uk/pub/muface. Figure 8 shows a As the targets overlap, the change detector merges the two
comparison of the results obtained with and without the dseldlobs and produces one observation only. In this case the
the PHD filter on the detected faces. When false detectians ahange of size is outside the range of changes modeled
processed, the mass of the PHD starts growing around thers. noise. When the targets split, the delay introduced by
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Tracking based on change detection Tracking based on face detection

81.4%

67.6% @ Detector

B Particle PHD

O GMM clustering
O Data association

) 26.5%
0.5% 5.4% - 4.5% 13.9%

Fig. 10. Percentage of computational resources allocaiedath of the
tracker blocks. The PHD filter requires fewer resources thandetectors.

computation is based on positional information only. If mor
complex gain functions are used to weight the edges of the
graph (for example by comparing target appearances using
color histograms), then the data association would sigmiflg
contribute to the overall computational cost. The larger re
source share claimed by the Particle PHD filter with the ckang
detector, compared to the face tracking case, is mainly due t
the larger average number of targets in the scene.

Figure 11 shows the processing time versus the number of
targets estimated on the BW scenario. The processing time of
the full tracker (PHD-MT) is compared with that of the recur-
sive filtering step (PHD&GMM). The results are obtained with
a non-optimized C++ implementation running on a Pentium

@) (b) © IV 3.2GHz. As the number of particles grows linearly with
Fig. 8. ~ Comparison of tracking results between the mufda tracker the number of targets and the number of observations, the
with (PHD-MT) and without (MT) Particle PHD filtering. (a) Dections . . . . .
(color-coded in red) and PHD output (color-coded in gre&gveral false theoretical computational cost is also linear. The mild -non
detections are filtered by the PHD (First, second and third).rgb) MT  linearity of the curve PHD&GMM is due to the fact that with
results. (c) PHD-MT results. The PHD-MT successfully remsvthe faces 5 |ow number of particles the processor performs most of
after a total occlusion without generating false tracks. . .

the operations using the cache memory. When the number of

targets increases, the filter propagates more particleshend
curves become steeper as the cost is now associated with the
use of off-chip memory. Also, a larger overhead of PHD-MT is
due to the non-optimal implementation of the object detecto
(0.5 seconds/frame), and not to the filter itself. Furthe®mo
as most of the calculations necessary to propagate a particl
depend on its previous state only, the Particle PHD is well
suited for a parallel implementation. With an optimized im-
plementation of the detector and a GPU (Graphics Processing
Unit) or multi-core implementation of the PHD filter, the
tracker could achieve real-time performance. It is of iesér
= also to compare the computational time of PHD&GMM with
Fig. 9. Failure modalities of the Particle-PHD filter wheringsa change the hypothetical results of a particle implementation that
detector. The red boxes are the observations and the grees lawe the propagates the full multi-target posterior (FP)_ When @nget

output of the PHD filter. (Top row) Inconsistent detectiongtie far field are ; e
interpreted by the PHD filter as clutter and therefore rerdoyBottom row) Only is visible, then the PHD and the FP resort to the same

Interaction between targets (object merging) generatesuading box for a algorithm (that takes 40 milliseconds/frame). With muéip
group of objects. targets, because the dimensionality of the state space in FP

grows, an exponential number of particles is necessary to
achieve a constant density sampling. The computationa tim
the PHD filter generates a set of missing detections. Whiger frame of an FP implementation would then be: 1.5 seconds
splitting could be partially handled by enabling spawniagi  for two targets, 40 minutes for four targets and 187 years
targets (see (15)), merging of observations poses a probletith 8 targets. In this case, the only feasible approach @oul
as the PHD was originally designed to track using punctulaé to use a more efficient sampling method in an MCMC
observations just as for those generated in a radar scendashion [9]. Unlike FP, the PHD filter limits the propagation
where the target interaction is weak. These problems can d¢féhe particles to the single target state space and thuewsh
overcome by using a trained object detector (e.g., a vehidilgear complexity.
detector), within the same framework.
The computational cosbf the Particle PHD filter is com- V. CONCLUSIONS
parable to that of the two object detectors (Fig. 10). The We have presented a multi-target visual tracker that engploy
data association has low influence on the overall cost as tharticle PHD filtering to remove clutter and missing detatsi
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Fig. 11.
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Processing time in milliseconds versus estimatedber of targets

in the scene on a sequence from the CLEAR-2007 dataset. PHRDHM
tracker; PHD&GMM: PHD filtering and GMM particle clusterirgteps.

El

[10]

(11]

[12]

[13]

[14]

from noisy observations. The motion of the targets and the
noise on the observations are modeled using Gaussians W

scale-dependent variances. To account for the differemtr@a

of the particles a multi-stage resampling strategy has beéfi
proposed. The resulting set of particles is clustered by a
modified GMM adapted to the Particle PHD. To generate ther
final tracks, the centers of the clusters are processed biaa da

association algorithm based on graph matching. The prapose

algorithm has the capability to remove non-persistente@tyto
filter missing detections, to smooth the tracks, and to

short-term occlusions. The approximation introduced by th,

(18]

PHD filter allows the reduction of computational cost from ex

ponential (with the number of targets) to linear. Experitaén
results over a large dataset of real-world sequences shaiw

the Particle PHD filter improves the robustness of the tracke
against clutter by verifying the coherence of consecutets s [21]
of detections.
As part of our current work, we are investigating datgz2]
driven methods to learn the parameters of the filter and nsodel

of track merging and splitting that combine the informatio
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